A role for interleukin-2 trans-presentation in dendritic cell–mediated T cell activation in humans, as revealed by daclizumab therapy (original) (raw)

References

  1. Waldmann, T.A. & O'Shea, J. The use of antibodies against the IL-2 receptor in transplantation. Curr. Opin. Immunol. 10, 507–512 (1998).
    Article CAS Google Scholar
  2. Nussenblatt, R.B. et al. Treatment of noninfectious intermediate and posterior uveitis with the humanized anti-Tac mAb: a phase I/II clinical trial. Proc. Natl. Acad. Sci. USA 96, 7462–7466 (1999).
    Article CAS Google Scholar
  3. Bielekova, B. et al. Humanized anti-CD25 (daclizumab) inhibits disease activity in multiple sclerosis patients failing to respond to interferon-β. Proc. Natl. Acad. Sci. USA 101, 8705–8708 (2004).
    Article CAS Google Scholar
  4. Bielekova, B. et al. Effect of anti-CD25 antibody daclizumab in the inhibition of inflammation and stabilization of disease progression in multiple sclerosis. Arch. Neurol. 66, 483–489 (2009).
    Article Google Scholar
  5. Rose, J.W. et al. Daclizumab phase II trial in relapsing and remitting multiple sclerosis: MRI and clinical results. Neurology 69, 785–789 (2007).
    Article CAS Google Scholar
  6. Willerford, D.M. et al. Interleukin-2 receptor α chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3, 521–530 (1995).
    Article CAS Google Scholar
  7. Sharfe, N., Dadi, H.K., Shahar, M. & Roifman, C.M. Human immune disorder arising from mutation of the α chain of the interleukin-2 receptor. Proc. Natl. Acad. Sci. USA 94, 3168–3171 (1997).
    Article CAS Google Scholar
  8. Aoki, C.A. et al. IL-2 receptor α deficiency and features of primary biliary cirrhosis. J. Autoimmun. 27, 50–53 (2006).
    Article CAS Google Scholar
  9. Roifman, C.M. Human IL-2 receptor α chain deficiency. Pediatr. Res. 48, 6–11 (2000).
    Article CAS Google Scholar
  10. Morgan, D.A., Ruscetti, F.W. & Gallo, R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 193, 1007–1008 (1976).
    Article CAS Google Scholar
  11. Setoguchi, R., Hori, S., Takahashi, T. & Sakaguchi, S. Homeostatic maintenance of natural Foxp3+ CD25+ CD4+ regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J. Exp. Med. 201, 723–735 (2005).
    Article CAS Google Scholar
  12. Lenardo, M.J. Interleukin-2 programs mouse T lymphocytes for apoptosis. Nature 353, 858–861 (1991).
    Article CAS Google Scholar
  13. Martin, J.F., Perry, J.S., Jakhete, N.R., Wang, X. & Bielekova, B. An IL-2 paradox: blocking CD25 on T cells induces IL-2–driven activation of CD56(bright) NK cells. J. Immunol. 185, 1311–1320 (2010).
    Article CAS Google Scholar
  14. Oh, U. et al. Regulatory T cells are reduced during anti-CD25 antibody treatment of multiple sclerosis. Arch. Neurol. 66, 471–479 (2009).
    Article Google Scholar
  15. Bielekova, B. et al. Regulatory CD56(bright) natural killer cells mediate immunomodulatory effects of IL-2R-α–targeted therapy (daclizumab) in multiple sclerosis. Proc. Natl. Acad. Sci. USA 103, 5941–5946 (2006).
    Article CAS Google Scholar
  16. Wang, X., Rickert, M. & Garcia, K.C. Structure of the quaternary complex of interleukin-2 with its α, β and γc receptors. Science 310, 1159–1163 (2005).
    Article CAS Google Scholar
  17. Leonard, W.J. et al. Signaling via the IL-2 and IL-7 receptors from the membrane to the nucleus. Cold Spring Harb. Symp. Quant. Biol. 64, 417–424 (1999).
    Article CAS Google Scholar
  18. Malek, T.R. The biology of interleukin-2. Annu. Rev. Immunol. 26, 453–479 (2008).
    Article CAS Google Scholar
  19. Granucci, F., Zanoni, I., Feau, S. & Ricciardi-Castagnoli, P. Dendritic cell regulation of immune responses: a new role for interleukin 2 at the intersection of innate and adaptive immunity. EMBO J. 22, 2546–2551 (2003).
    Article CAS Google Scholar
  20. Granucci, F. et al. Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nat. Immunol. 2, 882–888 (2001).
    Article CAS Google Scholar
  21. Velten, F.W., Rambow, F., Metharom, P. & Goerdt, S. Enhanced T-cell activation and T-cell–dependent IL-2 production by CD83+, CD25high, CD43high human monocyte-derived dendritic cells. Mol. Immunol. 44, 1544–1550 (2007).
    Article CAS Google Scholar
  22. Mnasria, K., Lagaraine, C., Manaa, J., Lebranchu, Y. & Oueslati, R. Anti CD25 treatment of human dendritic cells modulates both their cytokine synthesis profiles and their capacity to activate allogeneic CD4 T cells: a potential tolerogenic effect. Int. Immunopharmacol. 8, 414–422 (2008).
    Article CAS Google Scholar
  23. Mnasria, K., Lagaraine, C., Velge-Roussel, F., Lebranchu, Y. & Baron, C. Anti-CD25 antibodies decrease the ability of human dendritic cells to prime allogeneic CD4 T cells. Transplant. Proc. 41, 695–697 (2009).
    Article CAS Google Scholar
  24. Mnasria, K. et al. Anti-CD25 antibodies affect cytokine synthesis pattern of human dendritic cells and decrease their ability to prime allogeneic CD4+ T cells. J. Leukoc. Biol. 84, 460–467 (2008).
    Article CAS Google Scholar
  25. Siragam, V. et al. Intravenous immunoglobulin ameliorates ITP via activating Fcγ receptors on dendritic cells. Nat. Med. 12, 688–692 (2006).
    Article CAS Google Scholar
  26. Dubois, S., Mariner, J., Waldmann, T.A. & Tagaya, Y. IL-15Rα recycles and presents IL-15 in trans to neighboring cells. Immunity 17, 537–547 (2002).
    Article CAS Google Scholar
  27. Bielekova, B. et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat. Med. 6, 1167–1175 (2000).
    Article CAS Google Scholar
  28. Slack, E.C. et al. Syk-dependent ERK activation regulates IL-2 and IL-10 production by DC stimulated with zymosan. Eur. J. Immunol. 37, 1600–1612 (2007).
    Article CAS Google Scholar
  29. Strowig, T. et al. Tonsilar NK cells restrict B cell transformation by the Epstein-Barr virus via IFN-γ. PLoS Pathog. 4, e27 (2008).
    Article Google Scholar
  30. Kronin, V., Vremec, D. & Shortman, K. Does the IL-2 receptor α chain induced on dendritic cells have a biological function? Int. Immunol. 10, 237–240 (1998).
    Article CAS Google Scholar
  31. Létourneau, S., Krieg, C., Pantaleo, G. & Boyman, O. IL-2- and CD25-dependent immunoregulatory mechanisms in the homeostasis of T-cell subsets. J. Allergy Clin. Immunol. 123, 758–762 (2009).
    Article Google Scholar
  32. Caudy, A.A., Reddy, S.T., Chatila, T., Atkinson, J.P. & Verbsky, J.W. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked–like syndrome and defective IL-10 expression from CD4 lymphocytes. J. Allergy Clin. Immunol. 119, 482–487 (2007).
    Article CAS Google Scholar
  33. Wynn, D. et al. Daclizumab in active relapsing multiple sclerosis (CHOICE study): a phase 2, randomised, double-blind, placebo-controlled, add-on trial with interferon β. Lancet Neurol. 9, 381–390 (2010).
    Article CAS Google Scholar
  34. Cartagena, C.M., Burns, M.P. & Rebeck, G.W. 24S-hydroxycholesterol effects on lipid metabolism genes are modeled in traumatic brain injury. Brain Res. 1319, 1–12 (2010).
    Article CAS Google Scholar

Download references