The calcineurin inhibitor tacrolimus activates the renal sodium chloride cotransporter to cause hypertension (original) (raw)
References
Kim, H.C. et al. Primary immunosuppression with tacrolimus in kidney transplantation: three-year follow-up in a single center. Transplant. Proc.36, 2082–2083 (2004). ArticleCAS Google Scholar
Jain, A. et al. What have we learned about primary liver transplantation under tacrolimus immunosuppression? Long-term follow-up of the first 1000 patients. Ann. Surg.230, 441–448, discussion 448–449 (1999). ArticleCAS Google Scholar
Nijenhuis, T., Hoenderop, J.G. & Bindels, R.J. Downregulation of Ca2+ and Mg2+ transport proteins in the kidney explains tacrolimus (FK506)-induced hypercalciuria and hypomagnesemia. J. Am. Soc. Nephrol.15, 549–557 (2004). ArticleCAS Google Scholar
Mohebbi, N., Mihailova, M. & Wagner, C.A. The calcineurin inhibitor FK506 (tacrolimus) is associated with transient metabolic acidosis and altered expression of renal acid-base transport proteins. Am. J. Physiol. Renal Physiol.297, F499–F509 (2009). ArticleCAS Google Scholar
Takeda, Y., Miyamori, I., Furukawa, K., Inaba, S. & Mabuchi, H. Mechanisms of FK 506-induced hypertension in the rat. Hypertension33, 130–136 (1999). ArticleCAS Google Scholar
Curtis, J.J., Luke, R.G., Jones, P. & Diethelm, A.G. Hypertension in cyclosporine-treated renal transplant recipients is sodium dependent. Am. J. Med.85, 134–138 (1988). ArticleCAS Google Scholar
Kang, C.B., Hong, Y., Dhe-Paganon, S. & Yoon, H.S. FKBP family proteins: immunophilins with versatile biological functions. Neurosignals16, 318–325 (2008). ArticleCAS Google Scholar
Smith, K.D. et al. Delayed graft function and cast nephropathy associated with tacrolimus plus rapamycin use. J. Am. Soc. Nephrol.14, 1037–1045 (2003). ArticleCAS Google Scholar
Gooch, J.L., Roberts, B.R., Cobbs, S.L. & Tumlin, J.A. Loss of the alpha-isoform of calcineurin is sufficient to induce nephrotoxicity and altered expression of transforming growth factor-beta. Transplantation83, 439–447 (2007). ArticleCAS Google Scholar
McCormick, J.A., Nelson, J.H., Yang, C.L., Curry, J.N. & Ellison, D.H. Overexpression of the sodium chloride cotransporter is not sufficient to cause familial hyperkalemic Hypertension. Hypertension published online, doi:10.1161HYPERTENSIONAHA.110.167809 (6 September 2011).
Esteva-Font, C. et al. Ciclosporin-induced hypertension is associated with increased sodium transporter of the loop of Henle (NKCC2). Nephrol. Dial. Transplant.22, 2810–2816 (2007). ArticleCAS Google Scholar
Anselmo, A.N. et al. WNK1 and OSR1 regulate the Na+, K+, 2Cl− cotransporter in HeLa cells. Proc. Natl. Acad. Sci. USA103, 10883–10888 (2006). ArticleCAS Google Scholar
Yang, C.L., Angell, J., Mitchell, R. & Ellison, D.H. WNK kinases regulate thiazide-sensitive Na-Cl cotransport. J. Clin. Invest.111, 1039–1045 (2003). ArticleCAS Google Scholar
San-Cristobal, P. et al. Angiotensin II signaling increases activity of the renal Na-Cl cotransporter through a WNK4-SPAK-dependent pathway. Proc. Natl. Acad. Sci. USA106, 4384–4389 (2009). ArticleCAS Google Scholar
Melnikov, S., Mayan, H., Uchida, S., Holtzman, E.J. & Farfel, Z. Cyclosporine metabolic side effects: association with the WNK4 system. Eur. J. Clin. Invest.41, 1113–1120 (2011). ArticleCAS Google Scholar
Schultheis, P.J. et al. Phenotype resembling Gitelman's syndrome in mice lacking the apical Na+-Cl− cotransporter of the distal convoluted tubule. J. Biol. Chem.273, 29150–29155 (1998). ArticleCAS Google Scholar
Hu, D.C., Burtner, C., Hong, A., Lobo, P.I. & Okusa, M.D. Correction of renal hypertension after kidney transplantation from a donor with Gitelman syndrome. Am. J. Med. Sci.331, 105–109 (2006). Article Google Scholar
Colussi, G. et al. A thiazide test for the diagnosis of renal tubular hypokalemic disorders. Clin. J. Am. Soc. Nephrol.2, 454–460 (2007). ArticleCAS Google Scholar
Madala Halagappa, V.K., Tiwari, S., Riazi, S., Hu, X. & Ecelbarger, C.M. Chronic candesartan alters expression and activity of NKCC2, NCC, and ENaC in the obese Zucker rat. Am. J. Physiol.294, F1222–F1231 (2008). Google Scholar
Feng, M. et al. Genetic analysis of blood pressure in 8 mouse intercross populations. Hypertension54, 802–809 (2009). ArticleCAS Google Scholar
Koomans, H.A. & Ligtenberg, G. Mechanisms and consequences of arterial hypertension after renal transplantation. Transplantation72, S9–S12 (2001). ArticleCAS Google Scholar
Curtis, J.J. Hypertensinogenic mechanism of the calcineurin inhibitors. Curr. Hypertens. Rep.4, 377–380 (2002). Article Google Scholar
Segal, A.S., Hayslett, J.P. & Desir, G.V. On the natriuretic effect of verapamil: inhibition of ENaC and transepithelial sodium transport. Am. J. Physiol. Renal Physiol.283, F765–F770 (2002). Article Google Scholar
Paver, W.K. & Pauline, G.J. Hypertension and hyperpotassemia without renal disease in a young male. Med. J. Aust.2, 305–306 (1964). CAS Google Scholar
Calò, L., Davis, P.A. & Semplicini, A. Control of vascular tone in the syndromes of Bartter and Gitelman. Crit. Rev. Clin. Lab. Sci.37, 503–522 (2000). Article Google Scholar
Calò, L., Davis, P.A. & Semplicini, A. Reduced content of alpha subunit of Gq protein content in monocytes of Bartter and Gitelman syndromes: relationship with vascular hyporeactivity. Kidney Int.61, 353–354 (2002). Article Google Scholar
Guyton, A.C. Blood pressure control—special role of the kidneys and body fluids. Science252, 1813–1816 (1991). ArticleCAS Google Scholar
Adu, D., Michael, J., Turney, J. & McMaster, P. Hyperkalemia in cyclosporine treated renal allograft recipients. Lancet322, 370–372 (1983). Article Google Scholar
Heering, P.J. et al. Aldosterone resistance in kidney transplantation is in part induced by a down-regulation of mineralocorticoid receptor expression. Clin. Transplant.18, 186–192 (2004). ArticleCAS Google Scholar
Higgins, R. et al. Hyponatraemia and hyperkalaemia are more frequent in renal transplant recipients treated with tacrolimus than with cyclosporin. Further evidence for differences between cyclosporin and tacrolimus nephrotoxicities. Nephrol. Dial. Transplant.19, 444–450 (2004). ArticleCAS Google Scholar
Van Laecke, S. et al. Posttransplantation hypomagnesemia and its relation with immunosuppression as predictors of new-onset diabetes after transplantation. Am. J. Transplant9, 2140–2149 (2009). ArticleCAS Google Scholar
Arthur, J.M. & Shamim, S. Interaction of cyclosporine and FK506 with diuretics in transplant patients. Kidney Int.58, 325–330 (2000). ArticleCAS Google Scholar
Schindler, R., Tanriver, Y. & Frei, U. Hypertension and allograft nephropathy—cause, consequence, or both? Nephrol. Dial. Transplant.15, 8–10 (2000). ArticleCAS Google Scholar
Feng, M. et al. Validation of volume-pressure recording tail-cuff blood pressure measurements. Am. J. Hypertens.21, 1288–1291 (2008). Article Google Scholar
Kurtz, T.W., Griffin, K.A., Bidani, A.K., Davisson, R.L. & Hall, J.E. Recommendations for blood pressure measurement in humans and experimental animals. Part 2: Blood pressure measurement in experimental animals: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Hypertension45, 299–310 (2005). ArticleCAS Google Scholar
Yang, C.-L., Zhu, X. & Ellison, D.H. The thiazide-sensitive Na-Cl cotransporter is regulated by a WNK kinase signaling complex. J. Clin. Invest.117, 3403–3411 (2007). ArticleCAS Google Scholar
Welker, P. et al. Renal Na+-K+-Cl− cotransporter activity and vasopressin-induced trafficking are lipid raft-dependent. Am. J. Physiol.295, F789–F802 (2008). CAS Google Scholar
Piechotta, K., Lu, J. & Delpire, E. Cation chloride cotransporters interact with the stress-related kinases Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1). J. Biol. Chem.277, 50812–50819 (2002). ArticleCAS Google Scholar
Yang, S.S. et al. Mechanisms for hypercalciuria in pseudohypoaldosteronism type II–causing WNK4 knock-in mice. Endocrinology151, 1829–1836 (2010). ArticleCAS Google Scholar