The calcineurin inhibitor tacrolimus activates the renal sodium chloride cotransporter to cause hypertension (original) (raw)

References

  1. Kim, H.C. et al. Primary immunosuppression with tacrolimus in kidney transplantation: three-year follow-up in a single center. Transplant. Proc. 36, 2082–2083 (2004).
    Article CAS Google Scholar
  2. Jain, A. et al. What have we learned about primary liver transplantation under tacrolimus immunosuppression? Long-term follow-up of the first 1000 patients. Ann. Surg. 230, 441–448, discussion 448–449 (1999).
    Article CAS Google Scholar
  3. Nijenhuis, T., Hoenderop, J.G. & Bindels, R.J. Downregulation of Ca2+ and Mg2+ transport proteins in the kidney explains tacrolimus (FK506)-induced hypercalciuria and hypomagnesemia. J. Am. Soc. Nephrol. 15, 549–557 (2004).
    Article CAS Google Scholar
  4. Mohebbi, N., Mihailova, M. & Wagner, C.A. The calcineurin inhibitor FK506 (tacrolimus) is associated with transient metabolic acidosis and altered expression of renal acid-base transport proteins. Am. J. Physiol. Renal Physiol. 297, F499–F509 (2009).
    Article CAS Google Scholar
  5. Takeda, Y., Miyamori, I., Furukawa, K., Inaba, S. & Mabuchi, H. Mechanisms of FK 506-induced hypertension in the rat. Hypertension 33, 130–136 (1999).
    Article CAS Google Scholar
  6. Curtis, J.J., Luke, R.G., Jones, P. & Diethelm, A.G. Hypertension in cyclosporine-treated renal transplant recipients is sodium dependent. Am. J. Med. 85, 134–138 (1988).
    Article CAS Google Scholar
  7. Kang, C.B., Hong, Y., Dhe-Paganon, S. & Yoon, H.S. FKBP family proteins: immunophilins with versatile biological functions. Neurosignals 16, 318–325 (2008).
    Article CAS Google Scholar
  8. Smith, K.D. et al. Delayed graft function and cast nephropathy associated with tacrolimus plus rapamycin use. J. Am. Soc. Nephrol. 14, 1037–1045 (2003).
    Article CAS Google Scholar
  9. Gooch, J.L., Roberts, B.R., Cobbs, S.L. & Tumlin, J.A. Loss of the alpha-isoform of calcineurin is sufficient to induce nephrotoxicity and altered expression of transforming growth factor-beta. Transplantation 83, 439–447 (2007).
    Article CAS Google Scholar
  10. McCormick, J.A., Nelson, J.H., Yang, C.L., Curry, J.N. & Ellison, D.H. Overexpression of the sodium chloride cotransporter is not sufficient to cause familial hyperkalemic Hypertension. Hypertension published online, doi:10.1161HYPERTENSIONAHA.110.167809 (6 September 2011).
  11. Esteva-Font, C. et al. Ciclosporin-induced hypertension is associated with increased sodium transporter of the loop of Henle (NKCC2). Nephrol. Dial. Transplant. 22, 2810–2816 (2007).
    Article CAS Google Scholar
  12. Anselmo, A.N. et al. WNK1 and OSR1 regulate the Na+, K+, 2Cl− cotransporter in HeLa cells. Proc. Natl. Acad. Sci. USA 103, 10883–10888 (2006).
    Article CAS Google Scholar
  13. Yang, C.L., Angell, J., Mitchell, R. & Ellison, D.H. WNK kinases regulate thiazide-sensitive Na-Cl cotransport. J. Clin. Invest. 111, 1039–1045 (2003).
    Article CAS Google Scholar
  14. San-Cristobal, P. et al. Angiotensin II signaling increases activity of the renal Na-Cl cotransporter through a WNK4-SPAK-dependent pathway. Proc. Natl. Acad. Sci. USA 106, 4384–4389 (2009).
    Article CAS Google Scholar
  15. Melnikov, S., Mayan, H., Uchida, S., Holtzman, E.J. & Farfel, Z. Cyclosporine metabolic side effects: association with the WNK4 system. Eur. J. Clin. Invest. 41, 1113–1120 (2011).
    Article CAS Google Scholar
  16. Schultheis, P.J. et al. Phenotype resembling Gitelman's syndrome in mice lacking the apical Na+-Cl− cotransporter of the distal convoluted tubule. J. Biol. Chem. 273, 29150–29155 (1998).
    Article CAS Google Scholar
  17. Hu, D.C., Burtner, C., Hong, A., Lobo, P.I. & Okusa, M.D. Correction of renal hypertension after kidney transplantation from a donor with Gitelman syndrome. Am. J. Med. Sci. 331, 105–109 (2006).
    Article Google Scholar
  18. Colussi, G. et al. A thiazide test for the diagnosis of renal tubular hypokalemic disorders. Clin. J. Am. Soc. Nephrol. 2, 454–460 (2007).
    Article CAS Google Scholar
  19. Madala Halagappa, V.K., Tiwari, S., Riazi, S., Hu, X. & Ecelbarger, C.M. Chronic candesartan alters expression and activity of NKCC2, NCC, and ENaC in the obese Zucker rat. Am. J. Physiol. 294, F1222–F1231 (2008).
    Google Scholar
  20. Feng, M. et al. Genetic analysis of blood pressure in 8 mouse intercross populations. Hypertension 54, 802–809 (2009).
    Article CAS Google Scholar
  21. Koomans, H.A. & Ligtenberg, G. Mechanisms and consequences of arterial hypertension after renal transplantation. Transplantation 72, S9–S12 (2001).
    Article CAS Google Scholar
  22. Curtis, J.J. Hypertensinogenic mechanism of the calcineurin inhibitors. Curr. Hypertens. Rep. 4, 377–380 (2002).
    Article Google Scholar
  23. Segal, A.S., Hayslett, J.P. & Desir, G.V. On the natriuretic effect of verapamil: inhibition of ENaC and transepithelial sodium transport. Am. J. Physiol. Renal Physiol. 283, F765–F770 (2002).
    Article Google Scholar
  24. Paver, W.K. & Pauline, G.J. Hypertension and hyperpotassemia without renal disease in a young male. Med. J. Aust. 2, 305–306 (1964).
    CAS Google Scholar
  25. Calò, L., Davis, P.A. & Semplicini, A. Control of vascular tone in the syndromes of Bartter and Gitelman. Crit. Rev. Clin. Lab. Sci. 37, 503–522 (2000).
    Article Google Scholar
  26. Calò, L., Davis, P.A. & Semplicini, A. Reduced content of alpha subunit of Gq protein content in monocytes of Bartter and Gitelman syndromes: relationship with vascular hyporeactivity. Kidney Int. 61, 353–354 (2002).
    Article Google Scholar
  27. Guyton, A.C. Blood pressure control—special role of the kidneys and body fluids. Science 252, 1813–1816 (1991).
    Article CAS Google Scholar
  28. Adu, D., Michael, J., Turney, J. & McMaster, P. Hyperkalemia in cyclosporine treated renal allograft recipients. Lancet 322, 370–372 (1983).
    Article Google Scholar
  29. Heering, P.J. et al. Aldosterone resistance in kidney transplantation is in part induced by a down-regulation of mineralocorticoid receptor expression. Clin. Transplant. 18, 186–192 (2004).
    Article CAS Google Scholar
  30. Higgins, R. et al. Hyponatraemia and hyperkalaemia are more frequent in renal transplant recipients treated with tacrolimus than with cyclosporin. Further evidence for differences between cyclosporin and tacrolimus nephrotoxicities. Nephrol. Dial. Transplant. 19, 444–450 (2004).
    Article CAS Google Scholar
  31. Van Laecke, S. et al. Posttransplantation hypomagnesemia and its relation with immunosuppression as predictors of new-onset diabetes after transplantation. Am. J. Transplant 9, 2140–2149 (2009).
    Article CAS Google Scholar
  32. Arthur, J.M. & Shamim, S. Interaction of cyclosporine and FK506 with diuretics in transplant patients. Kidney Int. 58, 325–330 (2000).
    Article CAS Google Scholar
  33. Schindler, R., Tanriver, Y. & Frei, U. Hypertension and allograft nephropathy—cause, consequence, or both? Nephrol. Dial. Transplant. 15, 8–10 (2000).
    Article CAS Google Scholar
  34. Feng, M. et al. Validation of volume-pressure recording tail-cuff blood pressure measurements. Am. J. Hypertens. 21, 1288–1291 (2008).
    Article Google Scholar
  35. Kurtz, T.W., Griffin, K.A., Bidani, A.K., Davisson, R.L. & Hall, J.E. Recommendations for blood pressure measurement in humans and experimental animals. Part 2: Blood pressure measurement in experimental animals: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Hypertension 45, 299–310 (2005).
    Article CAS Google Scholar
  36. Yang, C.-L., Zhu, X. & Ellison, D.H. The thiazide-sensitive Na-Cl cotransporter is regulated by a WNK kinase signaling complex. J. Clin. Invest. 117, 3403–3411 (2007).
    Article CAS Google Scholar
  37. Welker, P. et al. Renal Na+-K+-Cl− cotransporter activity and vasopressin-induced trafficking are lipid raft-dependent. Am. J. Physiol. 295, F789–F802 (2008).
    CAS Google Scholar
  38. Piechotta, K., Lu, J. & Delpire, E. Cation chloride cotransporters interact with the stress-related kinases Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1). J. Biol. Chem. 277, 50812–50819 (2002).
    Article CAS Google Scholar
  39. Yang, S.S. et al. Mechanisms for hypercalciuria in pseudohypoaldosteronism type II–causing WNK4 knock-in mice. Endocrinology 151, 1829–1836 (2010).
    Article CAS Google Scholar

Download references