Requirement of argininosuccinate lyase for systemic nitric oxide production (original) (raw)

References

  1. Flam, B.R., Hartmann, P.J., Harrell-Booth, M., Solomonson, L.P. & Eichler, D.C. Caveolar localization of arginine regeneration enzymes, argininosuccinate synthase, and lyase, with endothelial nitric oxide synthase. Nitric Oxide 5, 187–197 (2001).
    Article CAS Google Scholar
  2. Mori, M. & Gotoh, T. Arginine metabolic enzymes, nitric oxide and infection. J. Nutr. 134, 2820S–2825S (2004).
    Article CAS Google Scholar
  3. Morris, S.M. Jr. Arginine metabolism: boundaries of our knowledge. J. Nutr. 137, 1602S–1609S (2007).
    Article CAS Google Scholar
  4. Krivitzky, L. et al. Intellectual, adaptive and behavioral functioning in children with urea cycle disorders. Pediatr. Res. 66, 96–101 (2009).
    Article CAS PubMed Central Google Scholar
  5. Scaglia, F. et al. Clinical consequences of urea cycle enzyme deficiencies and potential links to arginine and nitric oxide metabolism. J. Nutr. 134, 2775S–2782S (2004).
    Article CAS Google Scholar
  6. Zimmermann, A., Bachmann, C. & Baumgartner, R. Severe liver fibrosis in argininosuccinic aciduria. Arch. Pathol. Lab. Med. 110, 136–140 (1986).
    CAS PubMed Google Scholar
  7. Mori, T. et al. Progressive liver fibrosis in late-onset argininosuccinate lyase deficiency. Pediatr. Dev. Pathol. 5, 597–601 (2002).
    Article Google Scholar
  8. Erez, A., Nagamani, S.C. & Lee, B. Argininosuccinate lyase deficiency-argininosuccinic aciduria and beyond. Am. J. Med. Genet. C. Semin. Med. Genet. 157, 45–53 (2011).
    Article CAS PubMed Central Google Scholar
  9. Brunetti-Pierri, N., Erez, A., Shchelochkov, O., Craigen, W. & Lee, B. Systemic hypertension in two patients with ASL deficiency: A result of nitric oxide deficiency? Mol. Genet. Metab. 98, 195–197 (2009).
    Article CAS PubMed Central Google Scholar
  10. Fakler, C.R., Kaftan, H.A. & Nelin, L.D. Two cases suggesting a role for the L-arginine nitric oxide pathway in neonatal blood pressure regulation. Acta Paediatr. 84, 460–462 (1995).
    Article CAS Google Scholar
  11. Pearson, D.L. et al. Neonatal pulmonary hypertension–urea-cycle intermediates, nitric oxide production and carbamoyl-phosphate synthetase function. N. Engl. J. Med. 344, 1832–1838 (2001).
    Article CAS Google Scholar
  12. Summar, M.L. et al. Relationship between carbamoyl-phosphate synthetase genotype and systemic vascular function. Hypertension 43, 186–191 (2004).
    Article CAS Google Scholar
  13. Nagasaka, H. et al. Evaluation of endogenous nitric oxide synthesis in congenital urea cycle enzyme defects. Metabolism 58, 278–282 (2009).
    Article CAS Google Scholar
  14. Reid Sutton, V.P.Y., Davis, E.C. & Craigen, W.J. A mouse model of argininosuccinic aciduria: biochemical characterization. Mol. Genet. Metab. 78, 11–16 (2003).
    Article CAS Google Scholar
  15. de Jonge, W.J. et al. Overexpression of arginase I in enterocytes of transgenic mice elicits a selective arginine deficiency and affects skin, muscle and lymphoid development. Am. J. Clin. Nutr. 76, 128–140 (2002).
    Article CAS Google Scholar
  16. Auron, A. & Brophy, P.D. Hyperammonemia in review: pathophysiology, diagnosis and treatment. Pediatr. Nephrol. published online, doi:10.1007/s00467-011-1838-5 (23 March 2011).
  17. Naseem, K.M. The role of nitric oxide in cardiovascular diseases. Mol. Aspects Med. 26, 33–65 (2005).
    Article CAS Google Scholar
  18. Tojo, A.O.M. & Fujita, T. Role of macula densa neuronal nitric oxide synthase in renal diseases. Med. Mol. Morphol. 39, 2–7 (2006).
    Article CAS Google Scholar
  19. Zweier, J.L., Wang, P., Samouilov, A. & Kuppusamy, P. Enzyme-independent formation of nitric oxide in biological tissues. Nat. Med. 1, 804–809 (1995).
    Article CAS Google Scholar
  20. Cosby, K. et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat. Med. 9, 1498–1505 (2003).
    Article CAS Google Scholar
  21. Thomas, G., Hecker, M. & Ramwell, P.W. Vascular activity of polycations and basic amino acids: L-arginine does not specifically elicit endothelium-dependent relaxation. Biochem. Biophys. Res. Commun. 158, 177–180 (1989).
    Article CAS Google Scholar
  22. Gold, M.E., Wood, K.S., Byrns, R.E., Buga, G.M. & Ignarro, L.J. L-arginine-dependent vascular smooth muscle relaxation and cGMP formation. Am. J. Physiol. 259, H1813–H1821 (1990).
    CAS PubMed Google Scholar
  23. Bode-Böger, S.M., Scalera, F. & Ignarro, L.J. The l-arginine paradox: Importance of the L-arginine/asymmetrical dimethylarginine ratio. Pharmacol. Ther. 114, 295–306 (2007).
    Article Google Scholar
  24. Cals-Grierson, M.M. & Ormerod, A.D. Nitric oxide function in the skin. Nitric Oxide 10, 179–193 (2004).
    Article CAS Google Scholar
  25. Shimizu, Y., Sakai, M., Umemura, Y. & Ueda, H. Immunohistochemical localization of nitric oxide synthase in normal human skin: expression of endothelial-type and inducible-type nitric oxide synthase in keratinocytes. J. Dermatol. 24, 80–87 (1997).
    Article CAS Google Scholar
  26. Wang, R., Ghahary, A., Shen, Y.J., Scott, P.G. & Tredget, E.E. Human dermal fibroblasts produce nitric oxide and express both constitutive and inducible nitric oxide synthase isoforms. J. Invest. Dermatol. 106, 419–427 (1996).
    Article CAS Google Scholar
  27. Kurotobi, S. et al. Impaired vascular endothelium–dependent relaxation in Henoch-Schonlein purpura. Pediatr. Nephrol. 19, 138–143 (2004).
    Article Google Scholar
  28. Flam, B.R., Hartmann, P.J., Harrell-Booth, M., Solomonson, L.P. & Eichler, D.C. Caveolar localization of arginine regeneration enzymes, argininosuccinate synthase, and lyase, with endothelial nitric oxide synthase. Nitric Oxide 5, 187–197 (2001).
    Article CAS Google Scholar
  29. Solomonson, L.P., Flam, B.R., Pendleton, L.C., Goodwin, B.L. & Eichler, D.C. The caveolar nitric oxide synthase/arginine regeneration system for NO production in endothelial cells. J. Exp. Biol. 206, 2083–2087 (2003).
    Article CAS Google Scholar
  30. Oyadomari, S. et al. Coinduction of endothelial nitric oxide synthase and arginine recycling enzymes in aorta of diabetic rats. Nitric Oxide 5, 252–260 (2001).
    Article CAS Google Scholar
  31. Li, C., Huang, W., Harris, M.B., Goolsby, J.M. & Venema, R.C. Interaction of the endothelial nitric oxide synthase with the CAT-1 arginine transporter enhances NO release by a mechanism not involving arginine transport. Biochem. J. 386, 567–574 (2005).
    Article CAS PubMed Central Google Scholar
  32. Trevisson, E. et al. Functional complementation in yeast allows molecular characterization of missense argininosuccinate lyase mutations. J. Biol. Chem. 284, 28926–28934 (2009).
    Article CAS PubMed Central Google Scholar
  33. Trevisson, E. et al. Argininosuccinate lyase deficiency: mutational spectrum in Italian patients and identification of a novel ASL pseudogene. Hum. Mutat. 28, 694–702 (2007).
    Article CAS Google Scholar
  34. Trevisson, E. et al. Functional complementation in yeast allows molecular characterization of missense argininosuccinate lyase mutations. J. Biol. Chem. 284, 28926–28934 (2009).
    Article CAS PubMed Central Google Scholar
  35. Trevisson, E. et al. Argininosuccinate lyase deficiency: mutational spectrum in Italian patients and identification of a novel ASL pseudogene. Hum. Mutat. 28, 694–702 (2007).
    Article CAS Google Scholar
  36. Vallee, F., Turner, M.A., Lindley, P.L. & Howell, P.L. Crystal structure of an inactive duck delta II crystallin mutant with bound argininosuccinate. Biochemistry 38, 2425–2434 (1999).
    Article CAS Google Scholar
  37. Lee, H.J., Chiou, S.H. & Chang, G.G. Biochemical characterization and kinetic analysis of duck delta-crystallin with endogenous argininosuccinate lyase activity. Biochem. J. 283, 597–603 (1992).
    Article CAS PubMed Central Google Scholar
  38. Liu, P., Jenkins, N.A. & Copeland, N.G. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res. 13, 476–484 (2003).
    Article CAS PubMed Central Google Scholar
  39. Morello, R. et al. CRTAP is required for prolyl 3-hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 127, 291–304 (2006).
    Article CAS Google Scholar
  40. Skarnes, W.C. et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474, 337–342 (2011).
    Article CAS PubMed Central Google Scholar
  41. Bryan, N.S. et al. Cellular targets and mechanisms of nitros(yl)ation: an insight into their nature and kinetics in vivo. Proc. Natl. Acad. Sci. USA 101, 4308–4313 (2004).
    Article CAS Google Scholar
  42. Wang, X. et al. Measurement of nitric oxide levels in the red cell: validation of tri-iodide-based chemiluminescence with acid-sulfanilamide pretreatment. J. Biol. Chem. 281, 26994–27002 (2006).
    Article CAS Google Scholar
  43. Heller, R. et al. L-ascorbic acid potentiates endothelial nitric oxide synthesis via a chemical stabilization of tetrahydrobiopterin. J. Biol. Chem. 276, 40–47 (2001).
    Article CAS Google Scholar
  44. Dal Pra, I., Chiarini, A., Nemeth, E.F., Armato, U. & Whitfield, J.F. Roles of Ca2+ and the Ca2+-sensing receptor (CASR) in the expression of inducible NOS (nitric oxide synthase)-2 and its BH4 (tetrahydrobiopterin)-dependent activation in cytokine-stimulated adult human astrocytes. J. Cell. Biochem. 96, 428–438 (2005).
    Article CAS Google Scholar
  45. Marley, R., Feelisch, M., Holt, S. & Moore, K. A chemiluminescense-based assay for S-nitrosoalbumin and other plasma S-nitrosothiols. Free Radic. Res. 32, 1–9 (2000).
    Article CAS Google Scholar
  46. Bryan, N.S. & Grisham, M.B. Methods to detect nitric oxide and its metabolites in biological samples. Free Radic. Biol. Med. 43, 645–657 (2007).
    Article CAS PubMed Central Google Scholar

Download references