Requirement of argininosuccinate lyase for systemic nitric oxide production (original) (raw)
References
Flam, B.R., Hartmann, P.J., Harrell-Booth, M., Solomonson, L.P. & Eichler, D.C. Caveolar localization of arginine regeneration enzymes, argininosuccinate synthase, and lyase, with endothelial nitric oxide synthase. Nitric Oxide5, 187–197 (2001). ArticleCAS Google Scholar
Mori, M. & Gotoh, T. Arginine metabolic enzymes, nitric oxide and infection. J. Nutr.134, 2820S–2825S (2004). ArticleCAS Google Scholar
Morris, S.M. Jr. Arginine metabolism: boundaries of our knowledge. J. Nutr.137, 1602S–1609S (2007). ArticleCAS Google Scholar
Krivitzky, L. et al. Intellectual, adaptive and behavioral functioning in children with urea cycle disorders. Pediatr. Res.66, 96–101 (2009). ArticleCASPubMed Central Google Scholar
Scaglia, F. et al. Clinical consequences of urea cycle enzyme deficiencies and potential links to arginine and nitric oxide metabolism. J. Nutr.134, 2775S–2782S (2004). ArticleCAS Google Scholar
Zimmermann, A., Bachmann, C. & Baumgartner, R. Severe liver fibrosis in argininosuccinic aciduria. Arch. Pathol. Lab. Med.110, 136–140 (1986). CASPubMed Google Scholar
Mori, T. et al. Progressive liver fibrosis in late-onset argininosuccinate lyase deficiency. Pediatr. Dev. Pathol.5, 597–601 (2002). Article Google Scholar
Erez, A., Nagamani, S.C. & Lee, B. Argininosuccinate lyase deficiency-argininosuccinic aciduria and beyond. Am. J. Med. Genet. C. Semin. Med. Genet.157, 45–53 (2011). ArticleCASPubMed Central Google Scholar
Brunetti-Pierri, N., Erez, A., Shchelochkov, O., Craigen, W. & Lee, B. Systemic hypertension in two patients with ASL deficiency: A result of nitric oxide deficiency? Mol. Genet. Metab.98, 195–197 (2009). ArticleCASPubMed Central Google Scholar
Fakler, C.R., Kaftan, H.A. & Nelin, L.D. Two cases suggesting a role for the L-arginine nitric oxide pathway in neonatal blood pressure regulation. Acta Paediatr.84, 460–462 (1995). ArticleCAS Google Scholar
Pearson, D.L. et al. Neonatal pulmonary hypertension–urea-cycle intermediates, nitric oxide production and carbamoyl-phosphate synthetase function. N. Engl. J. Med.344, 1832–1838 (2001). ArticleCAS Google Scholar
Summar, M.L. et al. Relationship between carbamoyl-phosphate synthetase genotype and systemic vascular function. Hypertension43, 186–191 (2004). ArticleCAS Google Scholar
Nagasaka, H. et al. Evaluation of endogenous nitric oxide synthesis in congenital urea cycle enzyme defects. Metabolism58, 278–282 (2009). ArticleCAS Google Scholar
Reid Sutton, V.P.Y., Davis, E.C. & Craigen, W.J. A mouse model of argininosuccinic aciduria: biochemical characterization. Mol. Genet. Metab.78, 11–16 (2003). ArticleCAS Google Scholar
de Jonge, W.J. et al. Overexpression of arginase I in enterocytes of transgenic mice elicits a selective arginine deficiency and affects skin, muscle and lymphoid development. Am. J. Clin. Nutr.76, 128–140 (2002). ArticleCAS Google Scholar
Auron, A. & Brophy, P.D. Hyperammonemia in review: pathophysiology, diagnosis and treatment. Pediatr. Nephrol. published online, doi:10.1007/s00467-011-1838-5 (23 March 2011).
Naseem, K.M. The role of nitric oxide in cardiovascular diseases. Mol. Aspects Med.26, 33–65 (2005). ArticleCAS Google Scholar
Tojo, A.O.M. & Fujita, T. Role of macula densa neuronal nitric oxide synthase in renal diseases. Med. Mol. Morphol.39, 2–7 (2006). ArticleCAS Google Scholar
Zweier, J.L., Wang, P., Samouilov, A. & Kuppusamy, P. Enzyme-independent formation of nitric oxide in biological tissues. Nat. Med.1, 804–809 (1995). ArticleCAS Google Scholar
Cosby, K. et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat. Med.9, 1498–1505 (2003). ArticleCAS Google Scholar
Thomas, G., Hecker, M. & Ramwell, P.W. Vascular activity of polycations and basic amino acids: L-arginine does not specifically elicit endothelium-dependent relaxation. Biochem. Biophys. Res. Commun.158, 177–180 (1989). ArticleCAS Google Scholar
Gold, M.E., Wood, K.S., Byrns, R.E., Buga, G.M. & Ignarro, L.J. L-arginine-dependent vascular smooth muscle relaxation and cGMP formation. Am. J. Physiol.259, H1813–H1821 (1990). CASPubMed Google Scholar
Bode-Böger, S.M., Scalera, F. & Ignarro, L.J. The l-arginine paradox: Importance of the L-arginine/asymmetrical dimethylarginine ratio. Pharmacol. Ther.114, 295–306 (2007). Article Google Scholar
Cals-Grierson, M.M. & Ormerod, A.D. Nitric oxide function in the skin. Nitric Oxide10, 179–193 (2004). ArticleCAS Google Scholar
Shimizu, Y., Sakai, M., Umemura, Y. & Ueda, H. Immunohistochemical localization of nitric oxide synthase in normal human skin: expression of endothelial-type and inducible-type nitric oxide synthase in keratinocytes. J. Dermatol.24, 80–87 (1997). ArticleCAS Google Scholar
Wang, R., Ghahary, A., Shen, Y.J., Scott, P.G. & Tredget, E.E. Human dermal fibroblasts produce nitric oxide and express both constitutive and inducible nitric oxide synthase isoforms. J. Invest. Dermatol.106, 419–427 (1996). ArticleCAS Google Scholar
Kurotobi, S. et al. Impaired vascular endothelium–dependent relaxation in Henoch-Schonlein purpura. Pediatr. Nephrol.19, 138–143 (2004). Article Google Scholar
Flam, B.R., Hartmann, P.J., Harrell-Booth, M., Solomonson, L.P. & Eichler, D.C. Caveolar localization of arginine regeneration enzymes, argininosuccinate synthase, and lyase, with endothelial nitric oxide synthase. Nitric Oxide5, 187–197 (2001). ArticleCAS Google Scholar
Solomonson, L.P., Flam, B.R., Pendleton, L.C., Goodwin, B.L. & Eichler, D.C. The caveolar nitric oxide synthase/arginine regeneration system for NO production in endothelial cells. J. Exp. Biol.206, 2083–2087 (2003). ArticleCAS Google Scholar
Oyadomari, S. et al. Coinduction of endothelial nitric oxide synthase and arginine recycling enzymes in aorta of diabetic rats. Nitric Oxide5, 252–260 (2001). ArticleCAS Google Scholar
Li, C., Huang, W., Harris, M.B., Goolsby, J.M. & Venema, R.C. Interaction of the endothelial nitric oxide synthase with the CAT-1 arginine transporter enhances NO release by a mechanism not involving arginine transport. Biochem. J.386, 567–574 (2005). ArticleCASPubMed Central Google Scholar
Trevisson, E. et al. Functional complementation in yeast allows molecular characterization of missense argininosuccinate lyase mutations. J. Biol. Chem.284, 28926–28934 (2009). ArticleCASPubMed Central Google Scholar
Trevisson, E. et al. Argininosuccinate lyase deficiency: mutational spectrum in Italian patients and identification of a novel ASL pseudogene. Hum. Mutat.28, 694–702 (2007). ArticleCAS Google Scholar
Trevisson, E. et al. Functional complementation in yeast allows molecular characterization of missense argininosuccinate lyase mutations. J. Biol. Chem.284, 28926–28934 (2009). ArticleCASPubMed Central Google Scholar
Trevisson, E. et al. Argininosuccinate lyase deficiency: mutational spectrum in Italian patients and identification of a novel ASL pseudogene. Hum. Mutat.28, 694–702 (2007). ArticleCAS Google Scholar
Vallee, F., Turner, M.A., Lindley, P.L. & Howell, P.L. Crystal structure of an inactive duck delta II crystallin mutant with bound argininosuccinate. Biochemistry38, 2425–2434 (1999). ArticleCAS Google Scholar
Lee, H.J., Chiou, S.H. & Chang, G.G. Biochemical characterization and kinetic analysis of duck delta-crystallin with endogenous argininosuccinate lyase activity. Biochem. J.283, 597–603 (1992). ArticleCASPubMed Central Google Scholar
Liu, P., Jenkins, N.A. & Copeland, N.G. A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res.13, 476–484 (2003). ArticleCASPubMed Central Google Scholar
Morello, R. et al. CRTAP is required for prolyl 3-hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell127, 291–304 (2006). ArticleCAS Google Scholar
Skarnes, W.C. et al. A conditional knockout resource for the genome-wide study of mouse gene function. Nature474, 337–342 (2011). ArticleCASPubMed Central Google Scholar
Bryan, N.S. et al. Cellular targets and mechanisms of nitros(yl)ation: an insight into their nature and kinetics in vivo. Proc. Natl. Acad. Sci. USA101, 4308–4313 (2004). ArticleCAS Google Scholar
Wang, X. et al. Measurement of nitric oxide levels in the red cell: validation of tri-iodide-based chemiluminescence with acid-sulfanilamide pretreatment. J. Biol. Chem.281, 26994–27002 (2006). ArticleCAS Google Scholar
Heller, R. et al. L-ascorbic acid potentiates endothelial nitric oxide synthesis via a chemical stabilization of tetrahydrobiopterin. J. Biol. Chem.276, 40–47 (2001). ArticleCAS Google Scholar
Dal Pra, I., Chiarini, A., Nemeth, E.F., Armato, U. & Whitfield, J.F. Roles of Ca2+ and the Ca2+-sensing receptor (CASR) in the expression of inducible NOS (nitric oxide synthase)-2 and its BH4 (tetrahydrobiopterin)-dependent activation in cytokine-stimulated adult human astrocytes. J. Cell. Biochem.96, 428–438 (2005). ArticleCAS Google Scholar
Marley, R., Feelisch, M., Holt, S. & Moore, K. A chemiluminescense-based assay for S-nitrosoalbumin and other plasma S-nitrosothiols. Free Radic. Res.32, 1–9 (2000). ArticleCAS Google Scholar
Bryan, N.S. & Grisham, M.B. Methods to detect nitric oxide and its metabolites in biological samples. Free Radic. Biol. Med.43, 645–657 (2007). ArticleCASPubMed Central Google Scholar