- Zeisberg, M., Strutz, F. & Muller, G.A. Role of fibroblast activation in inducing interstitial fibrosis. J. Nephrol. 13 (suppl. 3), S111–S120 (2000).
PubMed Google Scholar
- Eddy, A.A. Molecular insights into renal interstitial fibrosis. J. Am. Soc. Nephrol. 7, 2495–2508 (1996).
CAS PubMed Google Scholar
- Strutz, F. & Muller, G.A. Renal fibrosis and the origin of the renal fibroblast. Nephrol. Dial. Transplant. 21, 3368–3370 (2006).
Article Google Scholar
- Okada, H., Strutz, F., Danoff, T.M., Kalluri, R. & Neilson, E.G. Possible mechanisms of renal fibrosis. Contrib. Nephrol. 118, 147–154 (1996).
Article CAS Google Scholar
- Zeisberg, M. & Neilson, E.G. Mechanisms of tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 21, 1819–1834 (2010).
Article CAS Google Scholar
- Meran, S. & Steadman, R. Fibroblasts and myofibroblasts in renal fibrosis. Int. J. Exp. Pathol. 92, 158–167 (2011).
Article CAS Google Scholar
- Barnes, J.L. & Glass, W.F. II. Renal interstitial fibrosis: a critical evaluation of the origin of myofibroblasts. Contrib. Nephrol. 169, 73–93 (2011).
Article CAS Google Scholar
- Grgic, I., Duffield, J.S. & Humphreys, B.D. The origin of interstitial myofibroblasts in chronic kidney disease. Pediatr. Nephrol. 27, 183–193 (2012).
Article Google Scholar
- Kirchhoff, C. Molecular characterization of epididymal proteins. Rev. Reprod. 3, 86–95 (1998).
Article CAS Google Scholar
- Kirchhoff, C., Habben, I., Ivell, R. & Krull, N. A major human epididymis-specific cDNA encodes a protein with sequence homology to extracellular proteinase inhibitors. Biol. Reprod. 45, 350–357 (1991).
Article CAS Google Scholar
- Hahm, K. et al. Alphav beta6 integrin regulates renal fibrosis and inflammation in Alport mouse. Am. J. Pathol. 170, 110–125 (2007).
Article CAS Google Scholar
- Zhang, G. et al. Urokinase receptor deficiency accelerates renal fibrosis in obstructive nephropathy. J. Am. Soc. Nephrol. 14, 1254–1271 (2003).
Article CAS Google Scholar
- Bingle, L., Singleton, V. & Bingle, C.D. The putative ovarian tumour marker gene HE4 (WFDC2), is expressed in normal tissues and undergoes complex alternative splicing to yield multiple protein isoforms. Oncogene 21, 2768–2773 (2002).
Article CAS Google Scholar
- Clauss, A., Lilja, H. & Lundwall, A. A locus on human chromosome 20 contains several genes expressing protease inhibitor domains with homology to whey acidic protein. Biochem. J. 368, 233–242 (2002).
Article CAS Google Scholar
- Clauss, A., Lilja, H. & Lundwall, A. The evolution of a genetic locus encoding small serine proteinase inhibitors. Biochem. Biophys. Res. Commun. 333, 383–389 (2005).
Article CAS Google Scholar
- Bingle, L. et al. WFDC2 (HE4): a potential role in the innate immunity of the oral cavity and respiratory tract and the development of adenocarcinomas of the lung. Respir. Res. 7, 61 (2006).
Article Google Scholar
- Greer, K.A. et al. Gene expression analysis in a canine model of X-linked Alport syndrome. Mamm. Genome 17, 976–990 (2006).
Article CAS Google Scholar
- Bielesz, B. et al. Epithelial Notch signaling regulates interstitial fibrosis development in the kidneys of mice and humans. J. Clin. Invest. 120, 4040–4054 (2010).
Article CAS Google Scholar
- Bunnag, S.a. Molecular correlates of renal functions in kidney transplant biopsies. J. Am. Soc. Nephrol. 20, 1149–1160 (2009).
Article Google Scholar
- Galgano, M.T., Hampton, G.M. & Frierson, H.F. Jr. Comprehensive analysis of HE4 expression in normal and malignant human tissues. Mod. Pathol. 19, 847–853 (2006).
Article CAS Google Scholar
- Sivashanmugam, P. et al. Characterization of mouse Eppin and a gene cluster of similar protease inhibitors on mouse chromosome 2. Gene 312, 125–134 (2003).
Article CAS Google Scholar
- Bignotti, E. et al. Diagnostic and prognostic impact of serum HE4 detection in endometrial carcinoma patients. Br. J. Cancer 104, 1418–1425 (2011).
Article CAS Google Scholar
- Drapkin, R. et al. Human epididymis protein 4 (HE4) is a secreted glycoprotein that is overexpressed by serous and endometrioid ovarian carcinomas. Cancer Res. 65, 2162–2169 (2005).
Article CAS Google Scholar
- Matsuo, S. et al. Multifunctionality of PAI-1 in fibrogenesis: evidence from obstructive nephropathy in PAI-1-overexpressing mice. Kidney Int. 67, 2221–2238 (2005).
Article CAS Google Scholar
- Oda, T. et al. PAI-1 deficiency attenuates the fibrogenic response to ureteral obstruction. Kidney Int. 60, 587–596 (2001).
Article CAS Google Scholar
- Catania, J.M., Chen, G. & Parrish, A.R. Role of matrix metalloproteinases in renal pathophysiologies. Am. J. Physiol. Renal Physiol. 292, F905–F911 (2007).
Article CAS Google Scholar
- Zeisberg, M. et al. Bone morphogenic protein-7 inhibits progression of chronic renal fibrosis associated with two genetic mouse models. Am J. Physiol. Renal Physiol. 285, F1060–F1067 (2003).
Article CAS Google Scholar
- Bechtel, W. et al. Methylation determines fibroblast activation and fibrogenesis in the kidney. Nat. Med. 16, 544–550 (2010).
Article CAS Google Scholar
- Panicker, L.M., Usha, R., Roy, S. & Mandal, C. Purification and characterization of a serine protease (CESP) from mature coconut endosperm. BMC Res. Notes 2, 81 (2009).
Article Google Scholar
- LeBleu, V.S., Sugimoto, H., Miller, C.A., Gattone, V.H. II & Kalluri, R. Lymphocytes are Dispensable for Glomerulonephritis but Required for Renal Interstitial Fibrosis in Matrix Defect Induced Alport Renal Disease. Lab. Invest. 88, 284–292 (2008).
Article CAS Google Scholar
- Lebleu, V.S. et al. Stem Cell Therapies Benefit Alport Syndrome. J. Am. Soc. Nephrol. 20, 2359–2370 (2009).
Article CAS Google Scholar
- Sugimoto, H. et al. Activin-like kinase 3 is important for kidney regeneration and reversal of fibrosis. Nat. Med. 18, 396–404 (2012).
Article CAS Google Scholar