- Belmaker, R.H. & Agam, G. Major depressive disorder. N. Engl. J. Med. 358, 55–68 (2008).
Article CAS Google Scholar
- Howren, M.B., Lamkin, D.M. & Suls, J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom. Med. 71, 171–186 (2009).
Article CAS Google Scholar
- Dowlati, Y. et al. A meta-analysis of cytokines in major depression. Biol. Psychiatry 67, 446–457 (2010).
Article CAS Google Scholar
- Krishnan, V. & Nestler, E.J. The molecular neurobiology of depression. Nature 455, 894–902 (2008).
Article CAS Google Scholar
- Brink, C.B., Harvey, B.H. & Brand, L. Tianeptine: a novel atypical antidepressant that may provide new insights into the biomolecular basis of depression. Recent Pat. CNS Drug Discov. 1, 29–41 (2006).
Article CAS Google Scholar
- Santarelli, L. et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301, 805–809 (2003).
Article CAS Google Scholar
- Koo, J.W. & Duman, R.S. IL-1β is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc. Natl. Acad. Sci. USA 105, 751–756 (2008).
Article CAS Google Scholar
- David, D.J. et al. Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62, 479–493 (2009).
Article CAS Google Scholar
- Warner-Schmidt, J.L. & Duman, R.S. Hippocampal neurogenesis: opposing effects of stress and antidepressant treatment. Hippocampus 16, 239–249 (2006).
Article CAS Google Scholar
- Gulbins, E. & Kolesnick, R. Raft ceramide in molecular medicine. Oncogene 22, 7070–7077 (2003).
Article CAS Google Scholar
- Grassmé, H. et al. CD95 signaling via ceramide-rich membrane rafts. J. Biol. Chem. 276, 20589–20596 (2001).
Article Google Scholar
- Perrotta, C. et al. Syntaxin 4 is required for acid sphingomyelinase activity and apoptotic function. J. Biol. Chem. 285, 40240–40251 (2010).
Article CAS Google Scholar
- Grassmé, H. et al. Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat. Med. 9, 322–330 (2003).
Article Google Scholar
- Baumann, P. et al. The AGNP-TDM Expert Group Consensus Guidelines: focus on therapeutic monitoring of antidepressants. Dialogues Clin. Neurosci. 7, 231–247 (2005).
PubMed PubMed Central Google Scholar
- Kölzer, M., Werth, N. & Sandhoff, K. Interactions of acid sphingomyelinase and lipid bilayers in the presence of the tricyclic antidepressant desipramine. FEBS Lett. 559, 96–98 (2004).
Article Google Scholar
- Kornhuber, J. et al. Identification of new functional inhibitors of acid sphingomyelinase using a structure-property-activity relation model. J. Med. Chem. 51, 219–237 (2008).
Article CAS Google Scholar
- Ranganathan, R., Sawin, E.R., Trent, C. & Horvitz, H.R. Mutations in the Caenorhabditis elegans serotonin reuptake transporter MOD-5 reveal serotonin-dependent and -independent activities of fluoxetine. J. Neurosci. 21, 5871–5884 (2001).
Article CAS Google Scholar
- Dempsey, C.M., Mackenzie, S.M., Gargus, A., Blanco, G. & Sze, J.Y. Serotonin (5HT), fluoxetine, imipramine and dopamine target distinct 5HT receptor signaling to modulate Caenorhabditis elegans egg-laying behavior. Genetics 169, 1425–1436 (2005).
Article CAS Google Scholar
- De Stefanis, D. et al. Increase in ceramide level alters the lysosomal targeting of cathepsin D prior to onset of apoptosis in HT-29 colon cancer cells. Biol. Chem. 383, 989–999 (2002).
Article CAS Google Scholar
- Hisaki, H. et al. In vivo influence of ceramide accumulation induced by treatment with a glucosylceramide synthase inhibitor on ischemic neuronal cell death. Brain Res. 1018, 73–77 (2004).
Article CAS Google Scholar
- Peltier, J., O'Neill, A. & Schaffer, D.V. PI3K and CREB regulate adult neural hippocampal progenitor proliferation and differentiation. Dev. Neurobiol. 67, 1348–1361 (2007).
Article CAS Google Scholar
- Zhang, Y., Li, X., Carpinteiro, A. & Gulbins, E. Acid sphingomyelinase amplifies redox signaling in _Pseudomonas aeruginosa_–induced macrophage apoptosis. J. Immunol. 181, 4247–4254 (2008).
Article CAS Google Scholar
- Mathias, S. et al. Activation of the sphingomyelin signaling pathway in intact EL4 cells and in a cell-free system by IL-1 β. Science 259, 519–522 (1993).
Article CAS Google Scholar
- Wiegmann, K., Schütze, S., Machleidt, T., Witte, D. & Krönke, M. Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell 78, 1005–1015 (1994).
Article CAS Google Scholar
- Kim, M.Y., Linardic, C., Obeid, L. & Hannun, Y. Identification of sphingomyelin turnover as an effector mechanism for the action of tumor necrosis factor α and γ-interferon. Specific role in cell differentiation. J. Biol. Chem. 266, 484–489 (1991).
CAS PubMed Google Scholar
- Brenner, B. et al. Fas- or ceramide-induced apoptosis is mediated by a Rac1-regulated activation of Jun N-terminal kinase/p38 kinases and GADD153. J. Biol. Chem. 272, 22173–22181 (1997).
Article CAS Google Scholar
- Lepple-Wienhues, A. et al. Stimulation of CD95 (Fas) blocks T lymphocyte calcium channels through sphingomyelinase and sphingolipids. Proc. Natl. Acad. Sci. USA 96, 13795–13800 (1999).
Article CAS Google Scholar
- Müller, N. COX-2 inhibitors as antidepressants and antipsychotics: clinical evidence. Curr. Opin. Investig. Drugs 11, 31–42 (2010).
PubMed Google Scholar
- Walker, J.R. et al. Psychiatric disorders in patients with immune-mediated inflammatory diseases: prevalence, association with disease activity, and overall patient well-being. J. Rheumatol. Suppl. 88, 31–35 (2011).
Article Google Scholar
- Rudisch, B. & Nemeroff, C.B. Epidemiology of comorbid coronary artery disease and depression. Biol. Psychiatry 54, 227–240 (2003).
Article Google Scholar
- Kojima, M. et al. Depression, inflammation, and pain in patients with rheumatoid arthritis. Arthritis Rheum. 61, 1018–1024 (2009).
Article Google Scholar
- Tabas, I. Sphingolipids and atherosclerosis: a mechanistic connection? A therapeutic opportunity? Circulation 110, 3400–3401 (2004).
Article Google Scholar
- Kornhuber, J. et al. High activity of acid sphingomyelinase in major depression. J. Neural Transm. 112, 1583–1590 (2005).
Article CAS Google Scholar
- Horinouchi, K. et al. Acid sphingomyelinase deficient mice: a model of types A and B Niemann-Pick disease. Nat. Genet. 10, 288–293 (1995).
Article CAS Google Scholar
- Lozano, J. et al. Niemann-Pick disease versus acid sphingomyelinase deficiency. Cell Death Differ. 8, 100–103 (2001).
Article CAS Google Scholar
- Lakso, M. et al. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl. Acad. Sci. USA 93, 5860–5865 (1996).
Article CAS Google Scholar
- Amato, D., Müller, C.P. & Badiani, A. Increased drinking after intra-striatal injection of the dopamine D2/D3 receptor agonist quinpirole in the rat. Psychopharmacology (Berl.) 223, 457–463 (2012).
Article CAS Google Scholar
- Franklin, K.B.J. & Paxinos, G. The Mouse Brain in Stereotaxic Coordinates 3rd edn., Figure 48 (Academic Press, San Diego, 2007).