Host-cell sensors for Plasmodium activate innate immunity against liver-stage infection (original) (raw)
malERA Consultative Group on Basic Science and Enabling Technologies. A research agenda for malaria eradication: basic science and enabling technologies. PLoS Med.8, e1000399 (2011).
Prudêncio, M., Rodriguez, A. & Mota, M.M. The silent path to thousands of merozoites: the Plasmodium liver stage. Nat. Rev. Microbiol.4, 849–856 (2006). ArticlePubMedCAS Google Scholar
Pamplona, A., Hanscheid, T., Epiphanio, S., Mota, M.M. & Vigario, A.M. Cerebral malaria and the hemolysis/methemoglobin/heme hypothesis: shedding new light on an old disease. Int. J. Biochem. Cell Biol.41, 711–716 (2009). ArticlePubMedCAS Google Scholar
Lang, K.S. et al. Immunoprivileged status of the liver is controlled by Toll-like receptor 3 signaling. J. Clin. Invest.116, 2456–2463 (2006). ArticlePubMedPubMed CentralCAS Google Scholar
Liehl, P. & Mota, M.M. Innate recognition of malarial parasites by mammalian hosts. Int. J. Parasitol.42, 557–566 (2012). ArticlePubMedCAS Google Scholar
Epiphanio, S. et al. Heme oxygenase-1 is an anti-inflammatory host factor that promotes murine plasmodium liver infection. Cell Host Microbe3, 331–338 (2008). ArticlePubMedCAS Google Scholar
Khan, Z.M., Ng, C. & Vanderberg, J.P. Early hepatic stages of Plasmodium berghei: release of circumsporozoite protein and host cellular inflammatory response. Infect. Immun.60, 264–270 (1992). PubMedPubMed CentralCAS Google Scholar
Leiriao, P., Mota, M.M. & Rodriguez, A. Apoptotic _Plasmodium_-infected hepatocytes provide antigens to liver dendritic cells. J. Infect. Dis.191, 1576–1581 (2005). ArticlePubMed Google Scholar
van de Sand, C. et al. The liver stage of Plasmodium berghei inhibits host cell apoptosis. Mol. Microbiol.58, 731–742 (2005). ArticlePubMedCAS Google Scholar
Schoggins, J.W. et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature472, 481–485 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Decker, T., Muller, M. & Stockinger, S. The yin and yang of type I interferon activity in bacterial infection. Nat. Rev. Immunol.5, 675–687 (2005). ArticlePubMedCAS Google Scholar
Pichlmair, A. et al. Ifit1 is an antiviral protein that recognizes 5′-triphosphate RNA. Nat. Immunol.12, 624–630 (2011). ArticlePubMedCAS Google Scholar
Mueller, A.K. et al. Plasmodium liver stage developmental arrest by depletion of a protein at the parasite-host interface. Proc. Natl. Acad. Sci. USA102, 3022–3027 (2005). ArticlePubMedCASPubMed Central Google Scholar
Mueller, A.K., Labaied, M., Kappe, S.H. & Matuschewski, K. Genetically modified Plasmodium parasites as a protective experimental malaria vaccine. Nature433, 164–167 (2005). ArticlePubMedCAS Google Scholar
van Dijk, M.R. et al. Genetically attenuated, P36p-deficient malarial sporozoites induce protective immunity and apoptosis of infected liver cells. Proc. Natl. Acad. Sci. USA102, 12194–12199 (2005). ArticlePubMedCASPubMed Central Google Scholar
Honda, K. & Taniguchi, T. Irfs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat. Rev. Immunol.6, 644–658 (2006). ArticlePubMedCAS Google Scholar
Barbalat, R., Lau, L., Locksley, R.M. & Barton, G.M. Toll-like receptor 2 on inflammatory monocytes induces type I interferon in response to viral but not bacterial ligands. Nat. Immunol.10, 1200–1207 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell140, 805–820 (2010). ArticlePubMedCAS Google Scholar
Kawai, T. et al. IPS-1, an adaptor triggering Rig-I– and Mda5-mediated type I interferon induction. Nat. Immunol.6, 981–988 (2005). ArticlePubMedCAS Google Scholar
Meylan, E. et al. Cardif is an adaptor protein in the Rig-I antiviral pathway and is targeted by hepatitis C virus. Nature437, 1167–1172 (2005). ArticlePubMedCAS Google Scholar
Seth, R.B., Sun, L., Ea, C.K. & Chen, Z.J. Identification and characterization of Mavs, a mitochondrial antiviral signaling protein that activates NF-κB and Irf 3. Cell122, 669–682 (2005). ArticlePubMedCAS Google Scholar
Xu, L.G. et al. VISA is an adapter protein required for virus-triggered Ifn-β signaling. Mol. Cell19, 727–740 (2005). ArticlePubMedCAS Google Scholar
Gitlin, L. et al. Essential role of mda-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl. Acad. Sci. USA103, 8459–8464 (2006). ArticlePubMedCASPubMed Central Google Scholar
Kato, H. et al. Differential roles of Mda5 and Rig-I helicases in the recognition of RNA viruses. Nature441, 101–105 (2006). ArticlePubMedCAS Google Scholar
Yoneyama, M. et al. The RNA helicase Rig-I has an essential function in double-stranded RNA–induced innate antiviral responses. Nat. Immunol.5, 730–737 (2004). ArticlePubMedCAS Google Scholar
Bogdan, C., Mattner, J. & Schleicher, U. The role of type I interferons in non-viral infections. Immunol. Rev.202, 33–48 (2004). ArticlePubMedCAS Google Scholar
Dondorp, A.M. et al. Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2. PLoS Med.2, e204 (2005). ArticlePubMedPubMed CentralCAS Google Scholar
Mohd Hanafiah, K., Groeger, J., Flaxman, A.D. & Wiersma, S.T. Global epidemiology of hepatitis C virus infection: new estimates of age-specific antibody to HCV seroprevalence. Hepatology57, 1333–1342 (2013). ArticlePubMed Google Scholar
Roberts, Z.J. et al. The chemotherapeutic agent DMXAA potently and specifically activates the TBK1–Irf-3 signaling axis. J. Exp. Med.204, 1559–1569 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Shirey, K.A. et al. The anti-tumor agent, 5,6-dimethylxanthenone-4-acetic acid (DMXAA), induces Ifn-β–mediated antiviral activity in vitro and in vivo. J. Leukoc. Biol.89, 351–357 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
González-Navajas, J.M., Lee, J., David, M. & Raz, E. Immunomodulatory functions of type I interferons. Nat. Rev. Immunol.12, 125–135 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Mourier, T. et al. Genome-wide discovery and verification of novel structured RNAs in Plasmodium falciparum. Genome Res.18, 281–292 (2008). ArticlePubMedPubMed CentralCAS Google Scholar
Ouwe-Missi-Oukem-Boyer, O. et al. Hepatitis C virus infection may lead to slower emergence of P. falciparum in blood. PLoS ONE6, e16034 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Kamphuis, E., Junt, T., Waibler, Z., Forster, R. & Kalinke, U. Type I interferons directly regulate lymphocyte recirculation and cause transient blood lymphopenia. Blood108, 3253–3261 (2006). ArticlePubMedCAS Google Scholar
Franke-Fayard, B. et al. A Plasmodium berghei reference line that constitutively expresses GFP at a high level throughout the complete life cycle. Mol. Biochem. Parasitol.137, 23–33 (2004). ArticlePubMedCAS Google Scholar
Ploemen, I.H. et al. Visualisation and quantitative analysis of the rodent malaria liver stage by real time imaging. PLoS ONE4, e7881 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Irizarry, R.A. et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics4, 249–264 (2003). ArticlePubMed Google Scholar
Gentleman, R. et al. limma: Linear Models for Microarray Data. in Bioinformatics and Computational Biology Solutions using R and Bioconductor 397–420 (Springer New York, 2005).
Falcon, S. & Gentleman, R. Using GOstats to test gene lists for GO term association. Bioinformatics23, 257–258 (2007). ArticlePubMedCAS Google Scholar
Gonçalves, L.A., Vigario, A.M. & Penha-Goncalves, C. Improved isolation of murine hepatocytes for in vitro malaria liver stage studies. Malar. J.6, 169 (2007). ArticlePubMedPubMed CentralCAS Google Scholar
Zhang, W. et al. PCB 126 and other dioxin-like PCBs specifically suppress hepatic PEPCK expression via the aryl hydrocarbon receptor. PLoS ONE7, e37103 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Sriprawat, K. et al. Effective and cheap removal of leukocytes and platelets from Plasmodium vivax infected blood. Malar. J.8, 115 (2009). ArticlePubMedPubMed Central Google Scholar
Schlee, M. et al. Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity31, 25–34 (2009). ArticlePubMedPubMed CentralCAS Google Scholar
Kolykhalov, A.A. et al. Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science277, 570–574 (1997). ArticlePubMedCAS Google Scholar
Saeed, M. et al. Efficient replication of genotype 3a and 4a hepatitis C virus replicons in human hepatoma cells. Antimicrob. Agents Chemother.56, 5365–5373 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Lopes da Silva, M. et al. The host endocytic pathway is essential for Plasmodium berghei late liver stage development. Traffic13, 1351–1363 (2012). ArticlePubMedCAS Google Scholar
Tsuji, M., Mattei, D., Nussenzweig, R.S., Eichinger, D. & Zavala, F. Demonstration of heat-shock protein 70 in the sporozoite stage of malaria parasites. Parasitol. Res.80, 16–21 (1994). ArticlePubMedCAS Google Scholar