Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes (original) (raw)
Nolan, C.J., Damm, P. & Prentki, M. Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet378, 169–181 (2011). Article Google Scholar
Chen, L., Magliano, D.J. & Zimmet, P.Z. The worldwide epidemiology of type 2 diabetes mellitus–present and future perspectives. Nat. Rev. Endocrinol.8, 228–236 (2012). ArticleCAS Google Scholar
Tahrani, A.A., Bailey, C.J., Del Prato, S. & Barnett, A.H. Management of type 2 diabetes: new and future developments in treatment. Lancet378, 182–197 (2011). ArticleCAS Google Scholar
Vetere, A., Choudhary, A., Burns, S.M. & Wagner, B.K. Targeting the pancreatic β-cell to treat diabetes. Nat. Rev. Drug Discov.13, 278–289 (2014). ArticleCAS Google Scholar
Ashcroft, F.M. & Rorsman, P. Diabetes mellitus and the β cell: the last ten years. Cell148, 1160–1171 (2012). ArticleCAS Google Scholar
Rorsman, P. & Braun, M. Regulation of insulin secretion in human pancreatic islets. Annu. Rev. Physiol.75, 155–179 (2013). ArticleCAS Google Scholar
Ahrén, B. Islet G protein–coupled receptors as potential targets for treatment of type 2 diabetes. Nat. Rev. Drug Discov.8, 369–385 (2009). Article Google Scholar
Sassmann, A. et al. The Gq/G11-mediated signaling pathway is critical for autocrine potentiation of insulin secretion in mice. J. Clin. Invest.120, 2184–2193 (2010). ArticleCAS Google Scholar
Ruiz de Azua, I., Gautam, D., Guettier, J.M. & Wess, J. Novel insights into the function of β-cell M3 muscarinic acetylcholine receptors: therapeutic implications. Trends Endocrinol. Metab.22, 74–80 (2011). ArticleCAS Google Scholar
Mancini, A.D. & Poitout, V. The fatty acid receptor FFA1/GPR40 a decade later: how much do we know? Trends Endocrinol. Metab.24, 398–407 (2013). ArticleCAS Google Scholar
Campbell, J.E. & Drucker, D.J. Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab.17, 819–837 (2013). ArticleCAS Google Scholar
Rosengren, A.H. et al. Overexpression of α2A-adrenergic receptors contributes to type 2 diabetes. Science327, 217–220 (2010). ArticleCAS Google Scholar
Regard, J.B. et al. Probing cell type–specific functions of Gi in vivo identifies GPCR regulators of insulin secretion. J. Clin. Invest.117, 4034–4043 (2007). CAS Google Scholar
Stoddart, L.A., Smith, N.J. & Milligan, G. International Union of Pharmacology. LXXI. Free fatty acid receptors FFA1, -2, and -3: pharmacology and pathophysiological functions. Pharmacol. Rev.60, 405–417 (2008). ArticleCAS Google Scholar
Ulven, T. Short-chain free fatty acid receptors FFAR2/GPR43 and FFAR3/GPR41 as new potential therapeutic targets. Front. Endocrinol. (Lausanne)3, 111 (2012). Article Google Scholar
Kebede, M.A., Alquier, T., Latour, M.G. & Poitout, V. Lipid receptors and islet function: therapeutic implications? Diabetes Obes. Metab.11 (suppl. 4), 10–20 (2009). ArticleCAS Google Scholar
Bjursell, M. et al. Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab.300, E211–E220 (2011). ArticleCAS Google Scholar
Tolhurst, G. et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein–coupled receptor FFAR2. Diabetes61, 364–371 (2012). ArticleCAS Google Scholar
Kimura, I. et al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun.4, 1829 (2013). Article Google Scholar
Samuel, B.S. et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein–coupled receptor, Gpr41. Proc. Natl. Acad. Sci. USA105, 16767–16772 (2008). ArticleCAS Google Scholar
Bellahcene, M. et al. Male mice that lack the G-protein-coupled receptor GPR41 have low energy expenditure and increased body fat content. Br. J. Nutr.109, 1755–1764 (2013). ArticleCAS Google Scholar
Lin, H.V. et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS ONE7, e35240 (2012). ArticleCAS Google Scholar
Zaibi, M.S. et al. Roles of GPR41 and GPR43 in leptin secretory responses of murine adipocytes to short chain fatty acids. FEBS Lett.584, 2381–2386 (2010). ArticleCAS Google Scholar
Ravassard, P. et al. A genetically engineered human pancreatic β cell line exhibiting glucose-inducible insulin secretion. J. Clin. Invest.121, 3589–3597 (2011). ArticleCAS Google Scholar
Brown, A.J. et al. The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem.278, 11312–11319 (2003). ArticleCAS Google Scholar
Le Poul, E. et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem.278, 25481–25489 (2003). ArticleCAS Google Scholar
Buckley, B.M. & Williamson, D.H. Origins of blood acetate in the rat. Biochem. J.166, 539–545 (1977). ArticleCAS Google Scholar
Smith, R.F., Humphreys, S. & Hockaday, T.D. The measurement of plasma acetate by a manual or automated technique in diabetic and non-diabetic subjects. Ann. Clin. Biochem.23, 285–291 (1986). ArticleCAS Google Scholar
Todesco, T. et al. Plasma acetate levels in a group of obese diabetic, obese normoglycemic, and control subjects and their relationships with other blood parameters. Am. J. Gastroenterol.88, 751–755 (1993). CAS Google Scholar
Nøhr, M.K. et al. GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology154, 3552–3564 (2013). Article Google Scholar
Tazoe, H. et al. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J. Physiol. Pharmacol.59 (suppl. 2), 251–262 (2008). Google Scholar
Madison, B.B. et al. Cis elements of the villin gene control expression in restricted domains of the vertical (crypt) and horizontal (duodenum, cecum) axes of the intestine. J. Biol. Chem.277, 33275–33283 (2002). ArticleCAS Google Scholar
Postic, C. et al. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J. Biol. Chem.274, 305–315 (1999). ArticleCAS Google Scholar
Wolever, T.M., Josse, R.G., Leiter, L.A. & Chiasson, J.L. Time of day and glucose tolerance status affect serum short-chain fatty acid concentrations in humans. Metabolism46, 805–811 (1997). ArticleCAS Google Scholar
Skutches, C.L., Holroyde, C.P., Myers, R.N., Paul, P. & Reichard, G.A. Plasma acetate turnover and oxidation. J. Clin. Invest.64, 708–713 (1979). ArticleCAS Google Scholar
Yamashita, H., Kaneyuki, T. & Tagawa, K. Production of acetate in the liver and its utilization in peripheral tissues. Biochim. Biophys. Acta1532, 79–87 (2001). ArticleCAS Google Scholar
Pouteau, E., Nguyen, P., Ballevre, O. & Krempf, M. Production rates and metabolism of short-chain fatty acids in the colon and whole body using stable isotopes. Proc. Nutr. Soc.62, 87–93 (2003). ArticleCAS Google Scholar
Layden, B.T., Yalamanchi, S.K., Wolever, T.M., Dunaif, A. & Lowe, W.L. Jr. Negative association of acetate with visceral adipose tissue and insulin levels. Diabetes Metab. Syndr. Obes.5, 49–55 (2012). ArticleCAS Google Scholar
Sakakibara, I. et al. Fasting-induced hypothermia and reduced energy production in mice lacking acetyl-CoA synthetase 2. Cell Metab.9, 191–202 (2009). ArticleCAS Google Scholar
Tiengo, A., Valerio, A., Molinari, M., Meneghel, A. & Lapolla, A. Effect of ethanol, acetaldehyde, and acetate on insulin and glucagon secretion in the perfused rat pancreas. Diabetes30, 705–709 (1981). ArticleCAS Google Scholar
Miyazaki, J. et al. Establishment of a pancreatic beta cell line that retains glucose-inducible insulin secretion: special reference to expression of glucose transporter isoforms. Endocrinology127, 126–132 (1990). ArticleCAS Google Scholar
Muyrers, J.P., Zhang, Y., Testa, G. & Stewart, A.F. Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res.27, 1555–1557 (1999). ArticleCAS Google Scholar
Ahmed, K. et al. An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81. Cell Metab.11, 311–319 (2010). ArticleCAS Google Scholar
van den Hoek, A.M. et al. Chronic PYY3-36 treatment promotes fat oxidation and ameliorates insulin resistance in C57BL6 mice. Am. J. Physiol. Endocrinol. Metab.292, E238–E245 (2007). ArticleCAS Google Scholar
Li, D.S., Yuan, Y.H., Tu, H.J., Liang, Q.L. & Dai, L.J. A protocol for islet isolation from mouse pancreas. Nat. Protoc.4, 1649–1652 (2009). ArticleCAS Google Scholar
Campbell, C.F. in Mouse Cell Culture: Methods and Protocols Vol. 633 (eds. Ward, A. & Tosh, D.) Ch. 14, 197–206 (Springer Science and Business Media, 2010).