- Kassem, S.A., Ariel, I., Thornton, P.S., Scheimberg, I. & Glaser, B. Beta cell proliferation and apoptosis in the developing normal human pancreas and in hyperinsulinism of infancy. Diabetes 49, 1325–1333 (2000).
CAS PubMed Google Scholar
- Meier, J.J. et al. Beta cell replication is the primary mechanism subserving the postnatal expansion of beta cell mass in humans. Diabetes 57, 1584–1594 (2008).
CAS PubMed PubMed Central Google Scholar
- Köhler, C.U. et al. Cell cycle control of beta cell replication in the prenatal and postnatal human pancreas. Am. J. Physiol. Endocrinol. Metab. 300, E221–E230 (2011).
PubMed Google Scholar
- Gregg, B.E. et al. Formation of a human beta cell population within pancreatic islets is set early in life. J. Clin. Endocrinol. Metab. 97, 3197–3206 (2012).
CAS PubMed PubMed Central Google Scholar
- Butler, A.E. et al. Beta cell deficit and increased beta cell apoptosis in humans with diabetes. Diabetes 52, 102–110 (2003).
CAS PubMed Google Scholar
- Saisho, Y. et al. Beta cell mass and turnover in humans: effects of obesity and aging. Diabetes Care 36, 111–117 (2013).
Google Scholar
- Kulkarni, R.N., Bernal-Mizrachi, E., Garcia-Ocaña, A. & Stewart, A.F. Human β-cell proliferation and intracellular signaling: driving in the dark without a roadmap. Diabetes 61, 2205–2213 (2012).
CAS PubMed PubMed Central Google Scholar
- Bernal-Mizrachi, E., Kulkarni, R.N., Stewart, A.F. & Garcia-Ocaña, A. Human β-Cell proliferation and intracellular signaling part 2: still driving in the dark without a roadmap. Diabetes 63, 819–831 (2014).
CAS PubMed PubMed Central Google Scholar
- Soucek, L. & Evan, G.I. The ups and downs of Myc biology. Curr. Opin. Genet. Dev. 20, 91–95 (2010).
CAS PubMed Google Scholar
- Wierstra, I. & Alves, J. The c-myc promoter: still M_yster_Y and _C_hallenge. Adv. Cancer Res. 99, 113–333 (2008).
PubMed Google Scholar
- Bretones, G., Delgado, M.D. & Leon, J. Myc and cell cycle control. Biochim. Biophys. Acta doi:10.1016/j.bbagrm.2014.03.013 (2014).
- Pelengaris, S., Kahn, M. & Evan, G.I. Suppression of myc-induced apoptosis in beta cells exposes multiple oncogenic properties of myc and triggers carcinogenic progression. Cell 109, 321–334 (2002).
CAS PubMed Google Scholar
- Pelengaris, S. & Khan, M. Oncogenic co-operation in β-cell tumorigenesis. Endocr. Relat. Cancer 8, 307–314 (2001).
CAS PubMed Google Scholar
- Finch, A. et al. Bcl-XL gain of function and p19ARF loss of function cooperate oncogenically with Myc in vivo by distinct mechanisms. Cancer Cell 10, 113–120 (2006).
CAS PubMed Google Scholar
- Laybutt, D.R. et al. Overexpression of c-myc in beta cells of transgenic mice causes proliferation and apoptosis, downregulation of insulin gene expression and diabetes. Diabetes 51, 1793–1804 (2002).
CAS PubMed Google Scholar
- Cano, D.A. et al. Regulated beta-cell regeneration in the adult mouse pancreas. Diabetes 57, 958–966 (2008).
CAS PubMed Google Scholar
- Karslioglu, E. et al. cMyc is the principal upstream driver of beta cell proliferation in rat insulinoma cell lines and Is an effective mediator of human beta cell replication. Mol. Endocrinol. 25, 1760–1772 (2011).
CAS PubMed PubMed Central Google Scholar
- Chung, N. et al. Median absolute deviation to improve hit selection for genome-scale RNAi screens. J. Biomol. Screen. 13, 149–158 (2008).
CAS PubMed Google Scholar
- Goktug, A.N., Chai, S.C.C. & Chen, T. Data analysis approaches in high throughput screening. in Drug Discovery Ch. 7, doi:10.5772/52508 (2013).
Google Scholar
- Becker, W. & Sippl, W. Activation, regulation and inhibition of Dyrk1a. FEBS J. 278, 246–256 (2011).
CAS PubMed Google Scholar
- Ogawa, Y. et al. Development of a novel selective inhibitor of the Down syndrome-related kinase Dyrk1a. Nat. Commun. 1, 86 10.1038/ncomms1090 (2010).
PubMed Google Scholar
- Tahtouh, T. et al. Selectivity, co-crystal structures and neuroprotective properties of leucettines, a family of protein kinase inhibitors derived from the marine sponge alkaloid leucettamine B. J. Med. Chem. 55, 9312–9330 (2012).
CAS PubMed Google Scholar
- Walte, A. et al. Mechanism of dual specificity kinase activity of Dyrk1a. FEBS J. 280, 4495–4511 (2013).
CAS PubMed Google Scholar
- Jain, P. et al. Human cdc2-like kinase 1 (CLK1): a novel target for Alzheimer's disease. Curr. Drug Targets 15, 539–550 (2014).
CAS PubMed Google Scholar
- Shen, W. et al. Small molecule inducer of beta cell proliferation identified by high-throughput screening. J. Am. Chem. Soc. 135, 1669–1672 (2013).
CAS PubMed Google Scholar
- Gallo, E.M., Cante-Barrett, K. & Crabtree, G.R. Lymphocyte calcium signaling from membrane to nucleus. Nat. Immunol. 7, 25–32 (2006).
CAS PubMed Google Scholar
- Heit, J.J. et al. Calcineurin/NFAT signaling regulates pancreatic β-cell growth and function. Nature 443, 345–349 (2006).
CAS PubMed Google Scholar
- Goodyer, W.R. et al. Neonatal beta cell development in mice and humans is regulated by calcineurin/NFaT. Dev. Cell 23, 21–34 (2012).
CAS PubMed PubMed Central Google Scholar
- Demozay, D., Tsunekawa, S., Briaud, I., Shah, R. & Rhodes, C.J. Specific glucose-induced control of insulin receptor-supstrate-2 expression is mediated by Ca2+-dependent calcineurin-NFAT signaling in primary pancreatic islet β-cells. Diabetes 60, 2892–2902 (2011).
CAS PubMed PubMed Central Google Scholar
- Nica, A.C. et al. Cell-type, allelic and genetic signatures in the human pancreatic beta cell transcriptome. Genome Res. 23, 1554–1562 (2013).
CAS PubMed PubMed Central Google Scholar
- Wang, H. et al. Improved low molecular weight Myc-Max inhibitors. Mol. Cancer Ther. 6, 2399–2408 (2007).
CAS PubMed Google Scholar
- de Alboran, I.M. et al. Analysis of cMYC function in normal cells via conditional gene-targeted mutation. Immunity 14, 45–55 (2001).
CAS PubMed Google Scholar
- Fotaki, V. et al. Dyrk1a haploinsufficiency affects viability and causes developmental delay and abnormal brain morphology in mice. Mol. Cell. Biol. 22, 6636–6647 (2002).
CAS PubMed PubMed Central Google Scholar
- Rachdi, L. et al. Dyrk1a haploinsufficiency induces diabetes in mice through decreased pancreatic beta cell mass. Diabetologia 57, 960–969 (2014).
CAS PubMed Google Scholar
- Rachdi, L. et al. Dyrk1a induces pancreatic beta cell mass expansion and improves glucose tolerance. Cell Cycle 13, 2221–2229 (2014).
CAS PubMed PubMed Central Google Scholar
- Brierley, D.I. & Davidson, C. Developments in harmine pharmacology – implications for ayahuasca use and drug-dependence treatment. Prog. Neuropsychopharmacol. Biol. Psychiatry 39, 263–272 (2012).
CAS PubMed Google Scholar
- Waki, H. et al. The small molecule harmine is an antidiabetic cell-type specific regulator of PPARγ expression. Cell Metab. 5, 357–370 (2007).
CAS PubMed Google Scholar
- Purwana, I. et al. GABA promotes human beta-cell proliferation and modulates glucose homeostasis. Diabetes 63, 4197–4205 (2014).
CAS PubMed Google Scholar
- Wang, W. et al. Identification of small molecule inducers of pancreatic beta cell proliferation. Proc. Natl. Acad. Sci. USA 106, 1427–1432 (2009).
CAS PubMed Google Scholar
- Chamberlain, C.E. et al. Menin determines K-Ras proliferative outputs in endocrine cells. J. Clin. Invest. 124, 4093–4101 (2014).
CAS PubMed PubMed Central Google Scholar
- He, T.C. et al. Identification of cMyc as a target of the APC pathway. Science 281, 1509–1512 (1998).
CAS PubMed Google Scholar
- Zhang, J.H., Chung, T. & Oldenburg, K. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4, 67–73 (1999).
CAS PubMed Google Scholar
- Lipinski, C.A., Lombardo, F., Dominy, B.W. & Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3–26 (2001).
CAS PubMed Google Scholar
- Ricordi, C. & Rastellini, C. Methods in pancreatic islet separation. in Methods in Cell Transplantation (ed. Ricordi, C.) 433–438 (R.G. Landes Co, Austin, Texas), (2000).
- Cozar-Castellano, I. et al. Lessons from the first comprehensive molecular characterization of cell cycle control in rodent insulinoma cell lines. Diabetes 57, 3056–3068 (2008).
CAS PubMed PubMed Central Google Scholar
- Metukuri, M.R. et al. ChREBP mediates glucose-stimulated pancreatic beta cell proliferation. Diabetes 61, 2004–2015 (2012).
CAS PubMed PubMed Central Google Scholar
- Fiaschi-Taesch, N.M. et al. Hepatocyte growth factor (HGF) enhances engraftment and function of non-human primate islets. Diabetes 57, 2745–2754 (2008).
CAS PubMed PubMed Central Google Scholar
- Fiaschi-Taesch, N.M. et al. A survey of the human pancreatic beta cell G1/S proteome reveals a potential therapeutic role for cdk-6 and cyclin D1 in enhancing human beta cell replication and function in vivo. Diabetes 58, 882–893 (2009).
CAS PubMed PubMed Central Google Scholar
- Fiaschi-Taesch, N. et al. Induction of human beta cell proliferation and engraftment using a single G1/S regulatory molecule, cdk6. Diabetes 59, 1926–1936 (2010).
CAS PubMed PubMed Central Google Scholar
- Peshavaria, M. et al. Regulation of pancreatic beta cell regeneration in the normoglycemic 60% pancreatectomy mouse. Diabetes 55, 3289–3298 (2006).
CAS PubMed Google Scholar
- Alvarez-Perez, J.C. et al. Hepatocyte growth factor/c-Met signaling is required for β-cell regeneration. Diabetes 63, 216–223 (2014).
CAS PubMed Google Scholar