Correlating telomerase activity levels with human neuroblastoma outcomes (original) (raw)

References

  1. Blackburn, E.H., Telomerases. Annu. Rev. Biochem. 61, 113–129 (1992).
    CAS PubMed Google Scholar
  2. Zakian, V.A. Structure and function of telomeres. Annu. Rev Genet. 23, 579–604 (1989).
    CAS PubMed Google Scholar
  3. De Lange, T. Activation of telomerase in a human tumour. Proc. natn. Acad. Sci. U. S.A. 91, 2882–2885 (1994).
    CAS Google Scholar
  4. Watson, J.D. Origin of concatemeric T7 DNA. Nature New Biolo. (London) 239, 197–201 (1972).
    CAS Google Scholar
  5. Olovnikov, A.M. A theory of marginotomy. J. Theor. Biol. 41, 181–190 (1973).
    CAS PubMed Google Scholar
  6. Levy, M.Z., Allsopp, R.C., Futcher, A.B., Greider, C.W. & Harley, C.B. Telomere end-replication problem and cell aging. J. molec. Biol. 225, 951–960 (1992).
    CAS PubMed Google Scholar
  7. Harley, C.B., Futcher, A.B. & Greider, C.W. Telomeres shorten during ageing of human flbroblasts. Nature 345, 458–460 (1990)
    CAS PubMed Google Scholar
  8. Allsopp, R.C. et al. Telomere length predicts replicative capacity of human fibroblasts. Proc. natn. Acad. Sci. U.S.A. 89, 10114–10118 (1992).
    CAS Google Scholar
  9. Vaziri, H. et al. Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am. J. Hum. Genet. 52, 661–669 (1993).
    CAS PubMed PubMed Central Google Scholar
  10. Shay, J.W., Wright, W.E., Brasiskyte, D. & Van Der Haegen, B.A. E6 of human papillomavirus type 16 can overcome the Ml stage of immortalization in human mammary epithelial cells but not in human flbroblasts. Oncogene 8, 1407–1413 (1993).
    CAS PubMed Google Scholar
  11. Shay, J.W., Wright, W.E. & Werbin, H. Toward a molecular understanding of human breast cancer: a hypothesis. Breast Cancer. Res. Treat, 25, 83–94 (1993).
    CAS PubMed Google Scholar
  12. Kim, N-W. et al. Specific association of human telomerase activity with immortal cells and cancer. Science, 266, 2011–2015 (1994).
    CAS PubMed Google Scholar
  13. Mantell, L.L. & Greider, C.W. Telomerase activity in germline and embryonic cells of Xenopus . EMBO J. 13, 3211–3217 (1994).
    CAS PubMed PubMed Central Google Scholar
  14. Counter, C.M. et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J. 11, 1921–1929 (1992).
    CAS PubMed PubMed Central Google Scholar
  15. Morin, G.B. The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats. Cell 59, 521–529 (1989).
    CAS PubMed Google Scholar
  16. Greider, C.W., Telomeres, telomerase and senescence. Bioessays 12, 363–369 (1990).
    CAS PubMed Google Scholar
  17. Greider, C.W. & Blackburn, E.H. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 43, 405–113 (1985).
    CAS PubMed Google Scholar
  18. Allshire, R.C., Dempster, M. & Hastie, N.D. Human telomeres contain at least three types of G-rich repeat distributed non-randomly. Nucl. Acids Res. 17, 4611–4627 (1989).
    CAS PubMed PubMed Central Google Scholar
  19. Hastie, N.D. et al. Telomere reduction in human colorectal carcinoma and with ageing. Nature 346, 866–868 (1990).
    CAS PubMed Google Scholar
  20. Lindsey, J., McGill, N.I., Lindsey, L.A., Green, D.K. & Cooke, H.J. In vivo loss of telomeric repeats with age in humans. Mutat. Res. 256, 45–48 (1991).
    CAS PubMed Google Scholar
  21. Harley, C.B. Telomere loss: Mitotic clock or genetic time bomb. Mutat. Res. 256, 271–282 (1991).
    CAS PubMed Google Scholar
  22. Wright, W.E. & Shay, J.W. Telomere positional effects and the regulation of cellular senescence. Trends Genet. 8, 193–198 (1992).
    CAS PubMed Google Scholar
  23. Shay, J.W., Wright, W.E. & Werbin, H. Loss of telomeric DNA during aging may predispose _Cell_s to cancer (Review). Int. J. Oncol. 3, 559–563 (1993).
    CAS PubMed Google Scholar
  24. Wright, W.E. & Shay, J.W. The two-stage mechanism controlling cellular senescence and immortalization. Exp. Geront. 27, 383–389 (1992).
    CAS Google Scholar
  25. Shay, J.W., Werbin, H. & Wright, W.E. Telomere shortening may contribute to aging and cancer: A perspective. Molec. Cell. Diff. 2, 1–21 (1994).
    CAS Google Scholar
  26. Counter, C.M., Botelho, F.M., Wang, P., Harely, C.B. & Bacchetti, S. Stabilization of short telomeres and telomerase activity accompany immortalization of Epstein-Barr virus transformed human B lymphocytes. J. Virol. 68, 3410–3414 (1994).
    CAS PubMed PubMed Central Google Scholar
  27. Counter, C.M., Hirte, H.W., Bacchetti, S. & Harley, C.B. Telomerase activity in human ovarian carcinoma. Proc. natn. Acad. Sci. U.S.A. 91, 2900–2904 (1994).
    CAS Google Scholar
  28. Shay, J.W., Tomlinson, G., Piatyszek, M.A. & Gollahon, L. Spontaneous in vitro immortalization of breast epithelial cells from a Li-Fraumeni patient. Molec. Cell. Biol. 15, 425–432 (1995).
    CAS PubMed PubMed Central Google Scholar
  29. Young, J.L., Ries, L.G., Silverberg, E., Horm, J.W. & Miller, R.W. Cancer incidence, survival, and mortality for children younger than age 15 years. Cancer 56, 598–602 (1986).
    Google Scholar
  30. Sawada, T. et al. Long-term effects of mass screening for neuroblastoma in infancy. Am. J. Pediatr. Hematol. Oncol. 13, 3–7 (1991).
    CAS PubMed Google Scholar
  31. Evans, A.E., Gerson, J. & Schnaufer, L. Spontaneous regression of neuroblastoma. Natn. Cancer Inst. Monogr. 44, 49–54 (1976).
    CAS Google Scholar
  32. Woods, W.G., Lemieux, B. & Tuchman, M. Neuroblastoma represents distinct clinical–biologic entities: A review and perspective from the Quebec neuroblastoma screening project. Pediatrics 89, 114–118 (1992).
    CAS PubMed Google Scholar
  33. Brodeur, G.M. et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J. Clin. Oncol. 11, 1466–1477 (1993).
    CAS PubMed Google Scholar
  34. Brodeur, G.M., Seeger, R.C., Schwab, M., Varmus, H.E. & Bishop, J.M. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224, 1121–1124 (1984).
    CAS PubMed Google Scholar
  35. D'Angio, G.J., Evans, A.E. & Koop, C.E. Special pattern of widespread neuroblastoma with a favorable prognosis. Lancet i, 1046–1049 (1971).
    Google Scholar
  36. Evans, A.E., Baum, E. & Chard, R. Do infants with stage IV-S neuroblastoma need treatment? Arch. Dis. Child 56, 271–274 (1981).
    CAS PubMed PubMed Central Google Scholar
  37. Kretschmar, C.S. et al. Improved prognosis for infants with stage IV neuroblastoma. J. Clin. Oncol. 2, 799–803 (1984).
    CAS PubMed Google Scholar
  38. Finklestein, J.Z. et al. Multiagent chemotherapy for children with metastatic neuroblastoma: a report from Childrens Cancer Study Group. Med. Pediatr. Oncol. 6, 179–188 (1979).
    CAS PubMed Google Scholar
  39. Evans, A.E., D'Angio, G.J. & Randolf, J. A proposed staging for children with neuroblastoma. Cancer 27, 374–378 (1971).
    CAS PubMed Google Scholar
  40. Seeger, R.C. et al. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. New Engl. J. Med. 313, 1111–1116 (1985).
    CAS PubMed Google Scholar
  41. Hayashi, Y. et al. Cytogenetic findings and prognosis in neuroblastoma with emphasis on marker chromosome 1. Cancer 63, 126–132 (1989).
    CAS PubMed Google Scholar
  42. Fong, C. et al. Loss of heterozygosity for the short arm of chromosome 1 in human neuroblastomas: correlation with N-myc amplification. Proc. natn. Acad. Sci. U.S.A. 86, 3753–3757 (1989).
    CAS Google Scholar
  43. Hellstrom, I., Hellstrom, K.E., Pierce, G.E. & Bill, A.H. Demonstration of cell-bound and humoral immunity against neuroblastoma cells. Proc. natn. Acad. Sci. U.S.A. 60, 1231–1238 (1968).
    CAS Google Scholar
  44. Rangecroft, L., Lauder, I. & Wagget, J. Spontaneous maturation of stage IV-S neuroblastoma. Arch Dis. Child 52, 815–817 (1978).
    Google Scholar
  45. Hiyama, E., Hiyama, K., Yokoyama, T., Ichikawa, T. & Matsuura, Y. Length of telomeric repeats in neuroblastoma: Correlation with prognosis and other biological characteristics. Jap. J. Cancer Res. 83, 159–164 (1992).
    CAS Google Scholar
  46. Shimada, H. et al. Histopathologic prognostic factors in neuroblastic tumours. J. natn. Cancer Inst. 73, 405–416 (1984).
    CAS Google Scholar
  47. Hiyama, E. et al. Alteration of telomeric repeat length in adult and childhood solid neoplasias. Int. J. Oncol. 6, 13–16 (1995).
    CAS PubMed Google Scholar
  48. Turkel, S.B. & Itabashi, H.H. The natural history of neuroblastic cells in the fetal adrenal gland. Am. J. Path. 76, 225–244 (1974).
    CAS PubMed PubMed Central Google Scholar
  49. Ikeda, Y., Lister, J., Bouton, J.M. & Buyukpamukcu, M. Congenital neuroblastoma, neuroblastoma in situ, and the normal fetal development of the adrenal. J. Pediatr. Surg. 16, 636–644 (1981).
    CAS PubMed Google Scholar
  50. Schwartz, H.S., Dhair, G.A. & Butler, M.G. Telomere reduction in giant cell tumour of bone and with age. Cancer Genet. Cytogenet. 71, 132–138 (1993).
    CAS PubMed PubMed Central Google Scholar
  51. Mehle, C., Ljungberg, B. & Roos, G. Telomere shortening in renal cell carcinoma. Cancer Res. 54, 236–241 (1994).
    CAS PubMed Google Scholar
  52. Nürnberg, P., Thiel, G., Weber, F. & Epplen, J.T. Changes of telomere lengths in human intracranial tumours. Human Genet. 91, 190–192 (1993).
    Google Scholar
  53. Schmitt, H., Blin, N., Zankl, H. & Scherthan, H. Telomere length variation in normal and malignant human tissue. Genes Chrom. & Cancer 11, 171–177 (1994).
    CAS Google Scholar
  54. Prichard, J. & Hickman, J.A. Why does stage 4s neuroblastoma regress spontaneously? Lancet 344, 869–870 (1994).
    Google Scholar
  55. James, D.H., Hutsu, O., Wrenn, E.L. & Pinkel, D. Combination chemotherapy of childhood neuroblastoma. JAMA 194, 123–126 (1965).
    Google Scholar
  56. Sawaguchi, S. et al. Treatment of advanced neuroblastoma with emphasis on intensive induction chemotherapy: a report from the Study Group of Japan. Cancer 66, 1879–1887 (1990).
    CAS PubMed Google Scholar

Download references