Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis (original) (raw)

References

  1. Raine, C.S. The neuropathology of multiple sclerosis. in Multiple Sclerosis: Clinical and Pathogenetic Basis (eds. Raine, C.S., McFarland, H.F. & Tourtelotte, W.W) 151–171 (Chapman and Hall, London, 1997).
    Google Scholar
  2. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998).
    CAS PubMed Google Scholar
  3. Waring, J.F. et al. Clustering of hepatotoxins based on mechanism of toxicity using gene expression profiles. Toxicol. Appl. Pharmacol. 175, 28–42 (2001).
    CAS PubMed Google Scholar
  4. Schadt, E.E., Li, C., Su, C. & Wong, W.H. Analyzing high-density oligonucleotide gene expression array data. J. Cell Biochem. 80, 192–202 (2000).
    CAS PubMed Google Scholar
  5. Schadt, E.E., Li, C., Ellis, B. & Wong, W.H. Feature extraction and normalization algorithms for high-density oligonucleotide gene expression array data. J. Cell Biochem. Suppl., 120–125 (2001).
  6. Hong, J.X., Wilson, G.L., Fox, C.H. & Kehrl, J.H. Isolation and characterization of a novel B cell activation gene. J. Immunol. 150, 3895–3904 (1993).
    CAS PubMed Google Scholar
  7. Dabiri, G.A., Young, C.L., Rosenbloom, J. & Southwick, F.S. Molecular cloning of human macrophage capping protein cDNA. A unique member of the gelsolin/villin family expressed primarily in macrophages. J. Biol. Chem 267, 16545–16552 (1992).
    CAS PubMed Google Scholar
  8. Kozopas, K.M., Yang, T., Buchan, H.L., Zhou, P. & Craig, R.W. MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc. Natl. Acad. Sci. USA 90, 3516–3520 (1993).
    CAS PubMed Google Scholar
  9. Rehli, M., Krause, S.W. & Andreesen, R. Molecular characterization of the gene for human cartilage gp-39 (CHI3L1), a member of the chitinase protein family and marker for late stages of macrophage differentiation. Genomics 43, 221–225 (1997).
    CAS PubMed Google Scholar
  10. Davoust, N. et al. Central nervous system-targeted expression of the complement inhibitor sCrry prevents experimental allergic encephalomyelitis. J. Immunol. 163, 6551–6556 (1999).
    CAS PubMed Google Scholar
  11. Walsh, L.A., Tone, M., Thiru, S. & Waldmann, H. The CD59 antigen—a multifunctional molecule. Tissue Antigens 40, 213–220 (1992).
    CAS PubMed Google Scholar
  12. Hauser, S.L., Doolittle, T.H., Lincoln, R., Brown, R.H. & Dinarello, C.A. Cytokine accumulations in CSF of multiple sclerosis patients: Frequent detection of interleukin-1 and tumor necrosis factor but not interleukin-6. Neurology 40, 1735–1739 (1990).
    CAS PubMed Google Scholar
  13. Jacobs, C.A. et al. Experimental autoimmune encephalomyelitis is exacerbated by IL-1 α and suppressed by soluble IL-1 receptor. J. Immunol. 146, 2983–2989 (1991).
    CAS PubMed Google Scholar
  14. Matusevicius, D. et al. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult. Scler. 5, 101–104 (1999).
    CAS PubMed Google Scholar
  15. Raine, C.S., Bonetti, B. & Cannella, B. Multiple sclerosis: Expression of molecules of the tumor necrosis factor ligand and receptor families in relationship to the demyelinated plaque. Rev. Neurol. (Paris) 154, 577–585 (1998).
    CAS Google Scholar
  16. Akira, S. & Kishimoto, T. IL-6 and NF-IL6 in acute-phase response and viral infection. Immunol. Rev. 127, 25–50 (1992).
    CAS PubMed Google Scholar
  17. Gijbels, K., Brocke, S., Abrams, J.S. & Steinman, L. Administration of neutralizing antibodies to interleukin-6 (IL-6) reduces experimental autoimmune encephalomyelitis and is associated with elevated levels of IL-6 bioactivity in central nervous system and circulation. Mol. Med. 1, 795–805 (1995).
    CAS PubMed PubMed Central Google Scholar
  18. Akassoglou, K., Probert, L., Kontogeorgos, G. & Kollias, G. Astrocyte-specific but not neuron-specific transmembrane TNF triggers inflammation and degeneration in the central nervous system of transgenic mice. J. Immunol. 158, 438–445 (1997).
    CAS PubMed Google Scholar
  19. Mao, Z., Bonni, A., Xia, F., Nadal-Vicens, M. & Greenberg, M.E. Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science 286, 785–790 (1999).
    CAS PubMed Google Scholar
  20. Penkowa, M. et al. Altered inflammatory response and increased neurodegeneration in metallothionein I+II deficient mice during experimental autoimmune encephalomyelitis. J. Neuroimmunol. 119, 248–260 (2001).
    CAS PubMed Google Scholar
  21. Pitt, D., Werner, P. & Raine, C.S. Glutamate excitotoxicity in a model of multiple sclerosis. Nature Med. 6, 67–70 (2000).
    CAS PubMed Google Scholar
  22. Trapp, B.D. et al. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 338, 278–285 (1998).
    CAS PubMed Google Scholar
  23. Yan, Y., Lagenaur, C. & Narayanan, V. Molecular cloning of M6: Identification of a PLP/DM20 gene family. Neuron 11, 423–431 (1993).
    CAS PubMed Google Scholar
  24. Yednock, T.A. et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4β1 integrin. Nature 356, 63–66 (1992).
    CAS PubMed Google Scholar
  25. Steinman, L. Assessment of the utility of animal models for MS and demyelinating disease in the design of rational therapy. Neuron 24, 511–514 (1999).
    CAS PubMed Google Scholar
  26. Takai, T., Li, M., Sylvestre, D., Clynes, R. & Ravetch, J.V. FcRγ chain deletion results in pleiotrophic effector cell defects. Cell 76, 519–529 (1994).
    CAS PubMed Google Scholar
  27. Miyajima, I. et al. Systemic anaphylaxis in the mouse can be mediated largely through IgG1 and FcγRIII. Assessment of the cardiopulmonary changes, mast cell degranulation, and death associated with active or IgE- or IgG1- dependent passive anaphylaxis. J. Clin. Invest. 99, 901–914 (1997).
    CAS PubMed PubMed Central Google Scholar
  28. Samuelsson, A., Towers, T.L. & Ravetch, J.V. Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 291, 484–486 (2001).
    CAS PubMed Google Scholar
  29. Achiron, A. et al. Intravenous immunoglobulin treatment of experimental T cell-mediated autoimmune disease. Upregulation of T-cell proliferation and downregulation of tumor necrosis factor α secretion. J. Clin. Invest. 93, 600–605 (1994).
    CAS PubMed PubMed Central Google Scholar
  30. Wucherpfennig, K.W. et al. Recognition of the immunodominant myelin basic protein peptide by autoantibodies and HLA-DR2-restricted T-cell clones from multiple sclerosis patients. Identity of key contact residues in the B-cell and T-cell epitopes. J. Clin. Invest. 100, 1114–1122 (1997).
    CAS PubMed PubMed Central Google Scholar
  31. Warren, K.G., Catz, I. & Steinman, L. Fine specificity of the antibody response to myelin basic protein in the central nervous system in multiple sclerosis: The minimal B-cell epitope and a model of its features. Proc. Natl. Acad. Sci. USA 92, 11061–11065 (1995).
    CAS PubMed Google Scholar
  32. Genain, C.P., Cannella, B., Hauser, S.L. & Raine, C.S. Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nature Med. 5, 170–175 (1999).
    CAS PubMed Google Scholar
  33. Whitney, L.W. et al. Analysis of gene expression in mutiple sclerosis lesions using cDNA microarrays. Ann. Neurol. 46, 425–428 (1999).
    CAS PubMed Google Scholar
  34. Wraith, D.C., Smilek, D.E., Mitchell, D.J., Steinman, L. & McDevitt, H.O. Antigen recognition in autoimmune encephalomyelitis and the potential for peptide-mediated immunotherapy. Cell 59, 247–255 (1989).
    CAS PubMed Google Scholar
  35. Pedotti, R. et al. An unexpected version of horror autotoxicus: Anaphylactic shock to a self-peptide. Nature Immunol. 2, 216–222 (2001).
    CAS Google Scholar
  36. Lucchinetti, C. et al. Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination. Ann. Neurol. 47, 707–717 (2000).
    CAS PubMed Google Scholar
  37. Haines, J.L. et al. A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. The Multiple Sclerosis Genetics Group. Nature Genet 13, 469–471 (1996).
    CAS PubMed Google Scholar
  38. Ebers, G.C. et al. A full genome search in multiple sclerosis. Nature Genet. 13, 472–476 (1996).
    CAS PubMed Google Scholar
  39. Sawcer, S. et al. A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nature Genet. 13, 464–468 (1996).
    CAS PubMed Google Scholar
  40. Zavala, F. et al. G-CSF therapy of ongoing experimental allergic encephalomyelitis via chemokine- and cytokine-based immune deviation. J. Immunol. 168, 2011–2019 (2002).
    CAS PubMed Google Scholar
  41. Matarese, G. et al. Requirement for leptin in the induction and progression of autoimmune encephalomyelitis. J. Immunol. 166, 5909–16 (2001).
    CAS PubMed Google Scholar
  42. Mountjoy, K.G., Robbins, L.S., Mortrud, M.T. & Cone, R.D. The cloning of a family of genes that encode the melanocortin receptors. Science 257, 1248–1251 (1992).
    CAS PubMed Google Scholar
  43. Poliak, S. et al. Stress and autoimmunity: The neuropeptides corticotropin-releasing factor and urocortin suppress encephalomyelitis via effects on both the hypothalamic-pituitary-adrenal axis and the immune system. J. Immunol. 158, 5751–5756 (1997).
    CAS PubMed Google Scholar

Download references