Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis (original) (raw)
References
Raine, C.S. The neuropathology of multiple sclerosis. in Multiple Sclerosis: Clinical and Pathogenetic Basis (eds. Raine, C.S., McFarland, H.F. & Tourtelotte, W.W) 151–171 (Chapman and Hall, London, 1997). Google Scholar
Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA95, 14863–14868 (1998). CASPubMed Google Scholar
Waring, J.F. et al. Clustering of hepatotoxins based on mechanism of toxicity using gene expression profiles. Toxicol. Appl. Pharmacol.175, 28–42 (2001). CASPubMed Google Scholar
Schadt, E.E., Li, C., Su, C. & Wong, W.H. Analyzing high-density oligonucleotide gene expression array data. J. Cell Biochem.80, 192–202 (2000). CASPubMed Google Scholar
Schadt, E.E., Li, C., Ellis, B. & Wong, W.H. Feature extraction and normalization algorithms for high-density oligonucleotide gene expression array data. J. Cell Biochem. Suppl., 120–125 (2001).
Hong, J.X., Wilson, G.L., Fox, C.H. & Kehrl, J.H. Isolation and characterization of a novel B cell activation gene. J. Immunol.150, 3895–3904 (1993). CASPubMed Google Scholar
Dabiri, G.A., Young, C.L., Rosenbloom, J. & Southwick, F.S. Molecular cloning of human macrophage capping protein cDNA. A unique member of the gelsolin/villin family expressed primarily in macrophages. J. Biol. Chem267, 16545–16552 (1992). CASPubMed Google Scholar
Kozopas, K.M., Yang, T., Buchan, H.L., Zhou, P. & Craig, R.W. MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc. Natl. Acad. Sci. USA90, 3516–3520 (1993). CASPubMed Google Scholar
Rehli, M., Krause, S.W. & Andreesen, R. Molecular characterization of the gene for human cartilage gp-39 (CHI3L1), a member of the chitinase protein family and marker for late stages of macrophage differentiation. Genomics43, 221–225 (1997). CASPubMed Google Scholar
Davoust, N. et al. Central nervous system-targeted expression of the complement inhibitor sCrry prevents experimental allergic encephalomyelitis. J. Immunol.163, 6551–6556 (1999). CASPubMed Google Scholar
Walsh, L.A., Tone, M., Thiru, S. & Waldmann, H. The CD59 antigen—a multifunctional molecule. Tissue Antigens40, 213–220 (1992). CASPubMed Google Scholar
Hauser, S.L., Doolittle, T.H., Lincoln, R., Brown, R.H. & Dinarello, C.A. Cytokine accumulations in CSF of multiple sclerosis patients: Frequent detection of interleukin-1 and tumor necrosis factor but not interleukin-6. Neurology40, 1735–1739 (1990). CASPubMed Google Scholar
Jacobs, C.A. et al. Experimental autoimmune encephalomyelitis is exacerbated by IL-1 α and suppressed by soluble IL-1 receptor. J. Immunol.146, 2983–2989 (1991). CASPubMed Google Scholar
Matusevicius, D. et al. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult. Scler.5, 101–104 (1999). CASPubMed Google Scholar
Raine, C.S., Bonetti, B. & Cannella, B. Multiple sclerosis: Expression of molecules of the tumor necrosis factor ligand and receptor families in relationship to the demyelinated plaque. Rev. Neurol. (Paris)154, 577–585 (1998). CAS Google Scholar
Akira, S. & Kishimoto, T. IL-6 and NF-IL6 in acute-phase response and viral infection. Immunol. Rev.127, 25–50 (1992). CASPubMed Google Scholar
Gijbels, K., Brocke, S., Abrams, J.S. & Steinman, L. Administration of neutralizing antibodies to interleukin-6 (IL-6) reduces experimental autoimmune encephalomyelitis and is associated with elevated levels of IL-6 bioactivity in central nervous system and circulation. Mol. Med.1, 795–805 (1995). CASPubMedPubMed Central Google Scholar
Akassoglou, K., Probert, L., Kontogeorgos, G. & Kollias, G. Astrocyte-specific but not neuron-specific transmembrane TNF triggers inflammation and degeneration in the central nervous system of transgenic mice. J. Immunol.158, 438–445 (1997). CASPubMed Google Scholar
Mao, Z., Bonni, A., Xia, F., Nadal-Vicens, M. & Greenberg, M.E. Neuronal activity-dependent cell survival mediated by transcription factor MEF2. Science286, 785–790 (1999). CASPubMed Google Scholar
Penkowa, M. et al. Altered inflammatory response and increased neurodegeneration in metallothionein I+II deficient mice during experimental autoimmune encephalomyelitis. J. Neuroimmunol.119, 248–260 (2001). CASPubMed Google Scholar
Pitt, D., Werner, P. & Raine, C.S. Glutamate excitotoxicity in a model of multiple sclerosis. Nature Med.6, 67–70 (2000). CASPubMed Google Scholar
Trapp, B.D. et al. Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med.338, 278–285 (1998). CASPubMed Google Scholar
Yan, Y., Lagenaur, C. & Narayanan, V. Molecular cloning of M6: Identification of a PLP/DM20 gene family. Neuron11, 423–431 (1993). CASPubMed Google Scholar
Yednock, T.A. et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4β1 integrin. Nature356, 63–66 (1992). CASPubMed Google Scholar
Steinman, L. Assessment of the utility of animal models for MS and demyelinating disease in the design of rational therapy. Neuron24, 511–514 (1999). CASPubMed Google Scholar
Takai, T., Li, M., Sylvestre, D., Clynes, R. & Ravetch, J.V. FcRγ chain deletion results in pleiotrophic effector cell defects. Cell76, 519–529 (1994). CASPubMed Google Scholar
Miyajima, I. et al. Systemic anaphylaxis in the mouse can be mediated largely through IgG1 and FcγRIII. Assessment of the cardiopulmonary changes, mast cell degranulation, and death associated with active or IgE- or IgG1- dependent passive anaphylaxis. J. Clin. Invest.99, 901–914 (1997). CASPubMedPubMed Central Google Scholar
Samuelsson, A., Towers, T.L. & Ravetch, J.V. Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science291, 484–486 (2001). CASPubMed Google Scholar
Achiron, A. et al. Intravenous immunoglobulin treatment of experimental T cell-mediated autoimmune disease. Upregulation of T-cell proliferation and downregulation of tumor necrosis factor α secretion. J. Clin. Invest.93, 600–605 (1994). CASPubMedPubMed Central Google Scholar
Wucherpfennig, K.W. et al. Recognition of the immunodominant myelin basic protein peptide by autoantibodies and HLA-DR2-restricted T-cell clones from multiple sclerosis patients. Identity of key contact residues in the B-cell and T-cell epitopes. J. Clin. Invest.100, 1114–1122 (1997). CASPubMedPubMed Central Google Scholar
Warren, K.G., Catz, I. & Steinman, L. Fine specificity of the antibody response to myelin basic protein in the central nervous system in multiple sclerosis: The minimal B-cell epitope and a model of its features. Proc. Natl. Acad. Sci. USA92, 11061–11065 (1995). CASPubMed Google Scholar
Genain, C.P., Cannella, B., Hauser, S.L. & Raine, C.S. Identification of autoantibodies associated with myelin damage in multiple sclerosis. Nature Med.5, 170–175 (1999). CASPubMed Google Scholar
Whitney, L.W. et al. Analysis of gene expression in mutiple sclerosis lesions using cDNA microarrays. Ann. Neurol.46, 425–428 (1999). CASPubMed Google Scholar
Wraith, D.C., Smilek, D.E., Mitchell, D.J., Steinman, L. & McDevitt, H.O. Antigen recognition in autoimmune encephalomyelitis and the potential for peptide-mediated immunotherapy. Cell59, 247–255 (1989). CASPubMed Google Scholar
Pedotti, R. et al. An unexpected version of horror autotoxicus: Anaphylactic shock to a self-peptide. Nature Immunol.2, 216–222 (2001). CAS Google Scholar
Lucchinetti, C. et al. Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination. Ann. Neurol.47, 707–717 (2000). CASPubMed Google Scholar
Haines, J.L. et al. A complete genomic screen for multiple sclerosis underscores a role for the major histocompatability complex. The Multiple Sclerosis Genetics Group. Nature Genet13, 469–471 (1996). CASPubMed Google Scholar
Ebers, G.C. et al. A full genome search in multiple sclerosis. Nature Genet.13, 472–476 (1996). CASPubMed Google Scholar
Sawcer, S. et al. A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22. Nature Genet.13, 464–468 (1996). CASPubMed Google Scholar
Zavala, F. et al. G-CSF therapy of ongoing experimental allergic encephalomyelitis via chemokine- and cytokine-based immune deviation. J. Immunol.168, 2011–2019 (2002). CASPubMed Google Scholar
Matarese, G. et al. Requirement for leptin in the induction and progression of autoimmune encephalomyelitis. J. Immunol.166, 5909–16 (2001). CASPubMed Google Scholar
Mountjoy, K.G., Robbins, L.S., Mortrud, M.T. & Cone, R.D. The cloning of a family of genes that encode the melanocortin receptors. Science257, 1248–1251 (1992). CASPubMed Google Scholar
Poliak, S. et al. Stress and autoimmunity: The neuropeptides corticotropin-releasing factor and urocortin suppress encephalomyelitis via effects on both the hypothalamic-pituitary-adrenal axis and the immune system. J. Immunol.158, 5751–5756 (1997). CASPubMed Google Scholar