Regulation of angiogenesis by hypoxia: role of the HIF system (original) (raw)
Krogh, A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J. Physiol. (London) 52, 409–415 (1919). CASPubMedPubMed Central Google Scholar
Hudlicka, O., Dodd, L., Renkin, E.M. & Gray, S.D. Early changes in fiber profile and capillary density in long-term stimulated muscles. Am. J. Physiol.243, H528–H535 (1982). CASPubMed Google Scholar
Jozsa, L., Balint, J., Reffy, A., Jarvinen, M. & Kvist, M. Capillary density of tenotomized skeletal muscles. II. Observations on human muscles after spontaneous rupture of tendon. Eur. J. Appl. Physiol. Occup. Physiol.44, 183–188 (1980). CASPubMed Google Scholar
Ashton, N., Ward, B. & Serpell, G. Effect of oxygen on developing retinal vessels with particular reference to the problem of retrolental fibroplasia. Br. J. Ophthalmol.38, 397–432 (1954). CASPubMedPubMed Central Google Scholar
Thomlinson, R.H. & Gray, L.H. The histological structure of some human lung cancers and the possible implications for radio-therapy. Br. J. Cancer9, 539–549 (1955). CASPubMedPubMed Central Google Scholar
Folkman, J., Merler, E., Abernathy, C. & Williams, G. Isolation of a tumor factor responsible for angiogenesis. J. Exp. Med.133, 275–288 (1971). CASPubMedPubMed Central Google Scholar
Knighton, D.R., Silver, I.A. & Hunt, T.K. Regulation of wound-healing angiogenesis - effect of oxygen gradients and inspired oxygen concentration. Surgery90, 262–270 (1981). CASPubMed Google Scholar
Knighton, D.R. et al. Oxygen tension regulates the expression of angiogenesis factor by macrophages. Science221, 1283–1285 (1983). CASPubMed Google Scholar
Kourembanas, S., Hannan, R.L. & Faller, D.V. Oxygen tension regulates the expression of the platelet-derived growth factor-β chain gene in human endothelial cells. J. Clin. Invest.86, 670–674 (1990). CASPubMedPubMed Central Google Scholar
Shweiki, D., Itin, A., Soffer, D. & Keshet, E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature359, 843–845 (1992). ArticleCASPubMed Google Scholar
Plate, K.H., Breier, G., Weich, H.A. & Risau, W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature359, 845–848 (1992). CASPubMed Google Scholar
Adair, T.H., Gay, W.J. & Montani, J.-P. Growth regulation of the vascular system: evidence for a metabolic hypothesis. Am. J. Physiol.259, R393–R404 (1990). CASPubMed Google Scholar
Jelkmann, W. Erythropoietin: structure, control of production, and function. Physiol. Rev.72, 449–489 (1992). CASPubMed Google Scholar
Necas, E. & Thorling, E.B. Unresponsiveness of erythropoietin-producing cells to cyanide. Am. J. Physiol.222, 1187–1190 (1972). CASPubMed Google Scholar
Goldwasser, E., Jacobson, L.O., Fried, W. & Plazk, L.F. Studies on erythropoiesis V: the effect of cobalt on the production of erythropoietin. Blood13, 55–60 (1958). CASPubMed Google Scholar
Goldberg, M.A. & Schneider, T.J. Similarities between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin. J. Biol. Chem.269, 4355–4359 (1994). CASPubMed Google Scholar
Gleadle, J.M., Ebert, B.L., Firth, J.D. & Ratcliffe, P.J. Regulation of angiogenic growth factor expression by hypoxia, transition metals, and chelating agents. Am. J. Physiol.268, C1362–C1368 (1995). CASPubMed Google Scholar
Liu, Y., Cox, S.R., Morita, T. & Kourembanas, S. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Circ. Res.77, 638–643 (1995). CASPubMed Google Scholar
Forsythe, J.A. et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol. Cell. Biol.16, 4604–4613 (1996). CASPubMedPubMed Central Google Scholar
Semenza, G.L. & Wang, G.L. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell. Biol.12, 5447–5454 (1992). CASPubMedPubMed Central Google Scholar
Wang, G.L., Jiang, B.-H., Rue, E.A. & Semenza, G.L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA92, 5510–5514 (1995). CASPubMedPubMed Central Google Scholar
Maxwell, P.H., Pugh, C.W. & Ratcliffe, P.J. Inducible operation of the erythropoietin 3′ enhancer in multiple cell lines: evidence for a widespread oxygen sensing mechanism. Proc. Natl. Acad. Sci. USA90, 2423–2427 (1993). CASPubMedPubMed Central Google Scholar
Semenza, G.L. HIF-1 and human disease: one highly involved factor. Genes Dev.14, 1983–1991 (2000). CASPubMed Google Scholar
Wenger, R.H. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J.16, 1151–1162 (2002). CASPubMed Google Scholar
Tian, H., McKnight, S.L. & Russell, D.W. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev.11, 72–82 (1997). CASPubMed Google Scholar
Wiesener, M.S. et al. Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1α. Blood92, 2260–2268 (1998). CASPubMed Google Scholar
Makino, Y. et al. Inhibitory PAS domain protein is a negative regulator of hypoxia-inducible gene expression. Nature414, 550–554 (2001). CASPubMed Google Scholar
Ivan, M. et al. HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science292, 464–468 (2001). CASPubMed Google Scholar
Jaakkola, P. et al. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science292, 468–472 (2001). CASPubMed Google Scholar
Yu, F., White, S.B., Zhao, Q. & Lee, F.S. HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation. Proc. Natl. Acad. Sci. USA98, 9630–9635 (2001). CASPubMedPubMed Central Google Scholar
Epstein, A.C.R. et al. C. elegans EGL-9 and mammalian homologues define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell107, 43–54 (2001). CASPubMed Google Scholar
Bruick, R.K. & McKnight, S.L. A conserved family of prolyl-4-hydroxylases that modify HIF. Science294, 1337–1340 (2001). CASPubMed Google Scholar
Hewitson, K.S. et al. Hypoxia inducible factor (HIF) asparagine hydroxylase is identical to Factor Inhibiting HIF (FIH) and is related to the cupin structural family. J. Biol. Chem.277, 26351–26355 (2002). CASPubMed Google Scholar
Masson, N., Willam, C., Maxwell, P.H., Pugh, C.W. & Ratcliffe, P.J. Independent function of two destruction domains in hypoxia-inducible factor-α chains activated by prolyl hydroxylation. EMBO J.20, 5197–5206 (2001). CASPubMedPubMed Central Google Scholar
Lando, D., Peet, D.J., Whelan, D.A., Gorman, J.J. & Whitelaw, M.L. Asparagine hydroxylation of the HIF transactivation domain: a hypoxic switch. Science295, 858–861 (2002). CASPubMed Google Scholar
Lando, D. et al. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev.16, 1466–1471 (2002). CASPubMedPubMed Central Google Scholar
Mahon, P.C., Hirota, K. & Semenza, G.L. FIH-1: a novel protein that interacts with HIF-1α and VHL to mediate repression of HIF-1 transcriptional activity. Genes Dev.15, 2675–2686 (2001). CASPubMedPubMed Central Google Scholar
Schofield, C.J. & Zhang, Z. Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes. Curr. Opin. Struct. Biol.9, 722–731 (1999). CASPubMed Google Scholar
Webster, K.A., Discher, D.J. & Bishopric, N.H. Regulation of fos and jun immediate-early genes by redox or metabolic stress in cardiac myocytes. Circ. Res.74, 679–686 (1994). CASPubMed Google Scholar
Koong, A.C., Chen, E.Y. & Giaccia, A.J. Hypoxia causes the activation of nuclear factor κB through the phosphorylation of IκBα on tyrosine residues. Cancer Res.54, 1425–1430 (1994). CASPubMed Google Scholar
Graeber, T.G. et al. Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol. Cell. Biol.14, 6264–6277 (1994). CASPubMedPubMed Central Google Scholar
Alarcon, R., Koumenis, C., Geyer, R.K., Maki, C.G. & Giaccia, A.J. Hypoxia induces p53 accumulation through MDM2 down-regulation and inhibition of E6-mediated degradation. Cancer Res.59, 6046–6051 (1999). CASPubMed Google Scholar
Kuznetsova, A.V. et al. von Hippel-Lindau protein binds hyperphosphorylated large subunit of RNA polymerase II through a proline hydroxylation motif and targets it for ubiquitination. Proc. Natl. Acad. Sci. USA100, 2706–2711 (2003). CASPubMedPubMed Central Google Scholar
Conway, E.M., Collen, D. & Carmeliet, P. Molecular mechanisms of blood vessel growth. Cardiovasc. Res.49, 507–521 (2001). CASPubMed Google Scholar
Melillo, G. et al. A hypoxia-responsive element mediates a novel pathway of activation of the inducible nitric oxide synthase promoter. J. Exp. Med.182, 1683–1693 (1995). CASPubMed Google Scholar
Enholm, B. et al. Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene14, 2475–2483 (1997). CASPubMed Google Scholar
Currie, M.J. et al. Expression of the angiopoietins and their receptor Tie2 in human renal clear cell carcinomas; regulation by the von Hippel-Lindau gene and hypoxia. J. Pathol.198, 502–510 (2002). CASPubMed Google Scholar
Tuder, R.M., Flook, B.E. & Voelkel, N.F. Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Flt in lungs exposed to acute or to chronic hypoxia. J. Clin. Invest.95, 1798–1807 (1995). CASPubMedPubMed Central Google Scholar
Gerber, H.-P., Condorelli, F., Park, J. & Ferrara, N. Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. J. Biol. Chem.272, 23659–23667 (1997). CASPubMed Google Scholar
Waltenberger, J., Mayr, U., Pentz, S. & Hombach, V. Functional upregulation of the vascular endothelial growth factor receptor KDR by hypoxia. Circulation94, 1647–1654 (1996). CASPubMed Google Scholar
Oh, H. et al. Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J. Biol. Chem.274, 15732–15739 (1999). CASPubMed Google Scholar
Mandriota, S. et al. Hypoxia-inducible angiopoietin-2 expression is mimicked by iodonium compounds and occurs in the rat brain and skin in response to systemic hypoxia and tissue ischaemia. Am. J. Pathol.156, 1–13 (2000). Google Scholar
Ben-Yosef, Y. et al. Regulation of endothelial matrix metalloproteinase-2 by hypoxia/reoxygenation. Circ. Res.90, 784–791 (2002). CASPubMed Google Scholar
Norman, J.T., Clark, I.M. & Garcia, P.L. Hypoxia promotes fibrogenesis in human renal fibroblasts. Kidney Int.58, 2351–2366 (2000). CASPubMed Google Scholar
Takahashi, Y., Takahashi, S., Shiga, Y., Yoshimi, T. & Miura, T. Hypoxic induction of prolyl 4-hydroxylase α(I) in cultured cells. J. Biol. Chem.275, 14139–14146 (2000). CASPubMed Google Scholar
Kietzmann, T., Roth, U. & Jungermann, K. Induction of the plasminogen activator inhibitor-1 gene expression by mild hypoxia via a hypoxia response element binding the hypoxia-inducible factor-1 in rat hepatocytes. Blood94, 4177–4185 (1999). CASPubMed Google Scholar
Graham, C.H., Fitzpatrick, T.E. & McCrae, K.R. Hypoxia stimulates urokinase receptor expression through a heme protein-dependent pathway. Blood91, 3300–3307 (1998). CASPubMed Google Scholar
Phelan, M.W., Forman, L.W., Perrine, S.P. & Faller, D.V. Hypoxia increases thrombospondin-1 transcript and protein in cultured endothelial cells. J. Lab. Clin. Med.132, 519–529 (1998). CASPubMed Google Scholar
Kuwubara, K. et al. Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells. Proc. Natl. Acad. Sci. USA92, 4606–4610 (1995). Google Scholar
Negus, R.P., Turner, L., Burke, F. & Balkwill, F.R. Hypoxia down-regulates MCP-1 expression: implications for macrophage distribution in tumors. J. Leukoc. Biol.63, 758–765 (1998). CASPubMed Google Scholar
Wykoff, C.C., Pugh, C.W., Maxwell, P.H., Harris, A.L. & Ratcliffe, P.J. Identification of novel hypoxia-dependent and independent target genes of the von Hippel-Lindau (VHL) tumor suppressor by mRNA differential expression profiling. Oncogene19, 6297–6305 (2000). CASPubMed Google Scholar
Sakuda, H., Nakashima, Y., Kuriyama, S. & Sueishi, K. Media conditioned by smooth muscle cells cultured in a variety of hypoxic environments stimulates in vitro angiogenesis. A relationship to transforming growth factor-β1. Am. J. Pathol.141, 1507–1516 (1992). CASPubMedPubMed Central Google Scholar
Phillips, P.G., Birnby, L.M. & Narendran, A. Hypoxia induces capillary network formation in cultured bovine pulmonary microvessel endothelial cells. Am. J. Physiol.268, L789–L800 (1995). CASPubMed Google Scholar
Krishnamachary, B. et al. Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res.63, 1138–1143 (2003). CASPubMed Google Scholar
Meininger, C.J., Schelling, M.E. & Granger, H.J. Adenosine and hypoxia stimulate proliferation and migration of endothelial cells. Am. J. Physiol.255, H554–H562 (1988). CASPubMed Google Scholar
Shreeniwas, R. et al. Macrovascular and microvascular endothelium during long-term hypoxia: alterations in cell growth, monolayer permeability, and cell surface coagulant properties. J. Cell. Physiol.146, 8–17 (1991). CASPubMed Google Scholar
Tucci, M. et al. Distinct effect of hypoxia on endothelial cell proliferation and cycling. Am. J. Physiol.272, C1700–C1708 (1997). CASPubMed Google Scholar
Iyer, N.V. et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev.12, 149–162 (1997). Google Scholar
Carmeliet, P. et al. Role of HIF-1α in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature394, 485–490 (1998). CASPubMed Google Scholar
Ryan, H.E., Lo, J. & Johnson, R.S. HIF-1α is required for solid tumor formation and embryonic vascularization. EMBO J.17, 3005–3015 (1998). CASPubMedPubMed Central Google Scholar
Levy, N.S., Chung, S., Furneaux, H. & Levy, A.P. Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J. Biol. Chem.273, 6417–6423 (1998). CASPubMed Google Scholar
Stein, I. et al. Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol. Cell. Biol.18, 3112–3119 (1998). CASPubMedPubMed Central Google Scholar
Barleon, B. et al. Vascular endothelial growth factor up-regulates its receptor fms-like tyrosine kinase 1 (FLT-1) and a soluble variant of FLT-1 in human vascular endothelial cells. Cancer Res.57, 5421–5425 (1997). CASPubMed Google Scholar
Kotch, L.E., Iyer, N.V., Laughner, E. & Semenza, G.L. Defective vascularization of HIF-1α-null embryos is not associated with VEGF deficiency but with mesenchymal cell death. Dev. Biol.209, 254–267 (1999). CASPubMed Google Scholar
Maltepe, E., Schmidt, J.V., Baunoch, D., Bradfield, C.A. & Simon, M.C. Abnormal angiogenesis and responses to glucose and oxygen deprivation in mice lacking the protein ARNT. Nature386, 403–407 (1997). CASPubMed Google Scholar
Peng, J., Zhang, L., Drysdale, L. & Fong, G.H. The transcription factor EPAS-1/hypoxia-inducible factor 2α plays an important role in vascular remodeling. Proc. Natl. Acad. Sci. USA97, 8386–8391 (2000). CASPubMedPubMed Central Google Scholar
Tian, H., Hammer, R.E., Matsumoto, A.M., Russell, D.W. & McKnight, S.L. The hypoxia responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev.12, 3320–3324 (1998). CASPubMedPubMed Central Google Scholar
Compernolle, V. et al. Loss of HIF-2α and inhibition of VEGF impair fetal lung maturation, whereas treatment with VEGF prevents fatal respiratory distress in premature mice. Nat. Med.8, 702–710 (2002). CASPubMed Google Scholar
Lee, Y.M. et al. Determination of hypoxic region by hypoxia marker in developing mouse embryos in vivo: a possible signal for vessel development. Dev. Dyn.220, 175–186 (2001). CASPubMed Google Scholar
Morita, M. et al. HLF/HIF-2α is a key factor in retinopathy of prematurity in association with erythropoietin. EMBO J.22, 1134–1146 (2003). CASPubMedPubMed Central Google Scholar
Grimm, C. et al. HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat. Med.8, 718–724 (2002). CASPubMed Google Scholar
Rosenberger, C. et al. Expression of hypoxia-inducible factor-1α and -2α in hypoxic and ischemic rat kidneys. J. Am. Soc. Nephrol.13, 1721–1732 (2002). CASPubMed Google Scholar
Lee, S.H. et al. Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N. Engl. J. Med.342, 626–633 (2000). CASPubMed Google Scholar
Stroka, D.M. et al. HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J.15, 2445–2453 (2001). CASPubMed Google Scholar
Wiesener, M.S. et al. Widespread, hypoxia-inducible expression of HIF-2α in distinct cell populations of different organs. FASEB J.17, 271–273 (2002). PubMed Google Scholar
Rajakumar, A., Doty, K., Daftary, A., Harger, G. & Conrad, K.P. Impaired oxygen-dependent reduction of HIF-1α and -2α proteins in pre-eclamptic placentae. Placenta24, 199–208 (2003). CASPubMed Google Scholar
Hollander, A.P., Corke, K.P., Freemont, A.J. & Lewis, C.E. Expression of hypoxia-inducible factor 1alpha by macrophages in the rheumatoid synovium: implications for targeting of therapeutic genes to the inflamed joint. Arthritis Rheum.44, 1540–1544 (2001). CASPubMed Google Scholar
Ozaki, H. et al. Hypoxia inducible factor-1α is increased in ischemic retina: temporal and spatial correlation with VEGF expression. Invest. Ophthalmol. Vis. Sci.40, 182–189 (1999). CASPubMed Google Scholar
Elson, D.A., Ryan, H.E., Snow, J.W., Johnson, R. & Arbeit, J.M. Coordinate up-regulation of hypoxia inducible factor (HIF)-1α and HIF-1 target genes during multi-stage epidermal carcinogenesis and wound healing. Cancer Res.60, 6189–6195 (2000). CASPubMed Google Scholar
Elson, D.A. et al. Induction of hypervascularity without leakage or inflammation in transgenic mice overexpressing hypoxia-inducible factor-1α. Genes Dev.15, 2520–2532 (2001). CASPubMedPubMed Central Google Scholar
Vincent, K.A. et al. Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding an HIF-1α/VP16 hybrid transcription factor. Circulation102, 2255–2261 (2000). CASPubMed Google Scholar
Shyu, K.G. et al. Intramyocardial injection of naked DNA encoding HIF-1α/VP16 hybrid to enhance angiogenesis in an acute myocardial infarction model in the rat. Cardiovasc. Res.54, 576–583 (2002). CASPubMed Google Scholar
Li, J. et al. PR39, a peptide regulator of angiogenesis. Nat. Med.6, 49–55 (2000). CASPubMed Google Scholar
Willam, C. et al. Peptide blockade of HIFα degradation modulates cellular metabolism and angiogenesis. Proc. Natl. Acad. Sci. USA99, 10423–10428 (2002). CASPubMedPubMed Central Google Scholar
Nwogu, N.I. et al. Inhibition of collagen synthesis with prolyl 4-hydroxylase inhibitor improves left ventricular function and alters the pattern of left ventricular dilatation after myocardial infarction. Circulation104, 2216–2221 (2001). CASPubMed Google Scholar
Ivan, M. et al. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc. Natl. Acad. Sci. USA99, 13459–13464 (2002). CASPubMedPubMed Central Google Scholar
Aravind, L. & Koonin, E.V. The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and iron-dependent dioxygenases. Genome Biol.2, 0007.1–0007.8 (2001). Google Scholar
Elkins, J.M. et al. Structure of factor-inhibiting hypoxia-inducible factor (HIF) reveals mechanism of oxidative modification of HIF-1α. J. Biol. Chem.278, 1802–1806 (2003). CASPubMed Google Scholar
Semenza, G.L. Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit. Rev. Biochem. Mol. Biol.35, 71–103 (2000). CASPubMed Google Scholar
Maxwell, P.H., Pugh, C.W. & Ratcliffe, P.J. Activation of the HIF pathway in cancer. Curr. Opin. Genet. Dev.11, 293–299 (2001). CASPubMed Google Scholar
Richard, D.E., Berra, E., Gothie, E., Roux, D. & Pouysségur, J. p42/p44 mitogen-activated protein kinases phosphorylate hypoxia-inducible factor 1α (HIF-1α) and enhance the transcriptional activity of HIF-1. J. Biol. Chem.274, 32631–32637 (1999). CASPubMed Google Scholar
Chan, D.A., Sutphin, P.D., Denko, N.C. & Giaccia, A.J. Role of prolyl hydroxylation in oncogenically stabilized hypoxia-inducible factor-1α. J. Biol. Chem.277, 40112–40117 (2002). CASPubMed Google Scholar
Knowles, H.J., Raval, R.R., Harris, A.L. & Ratcliffe, P.J. Effect of ascorbate on the activity of hypoxia inducible factor (HIF) in cancer cells. Cancer Res.63, 1764–1768 (2003). CASPubMed Google Scholar
Le, N.T.V. & Richardson, D.R. The role of iron in cell cycle progression and the proliferation of neoplastic cells. Biochim. Biophys. Acta1603, 31–46 (2002). CASPubMed Google Scholar
Maxwell, P.H. et al. Hypoxia inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc. Natl. Acad. Sci. USA94, 8104–8109 (1997). CASPubMedPubMed Central Google Scholar
Kung, A.L., Wang, S., Klco, J.M., Kaelin, W.G. & Livingston, D.M. Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nat. Med.6, 1335–1340 (2000). CASPubMed Google Scholar
Hopfl, G. et al. Rescue of hypoxia-inducible factor-1α-deficient tumor growth by wild-type cells is independent of vascular endothelial growth factor. Cancer Res.62, 2962–2970 (2002). CASPubMed Google Scholar
Ryan, H.E. et al. Hypoxia-inducible factor-lα is a positive factor in solid tumor growth. Cancer Res.60, 4010–4015 (2000). CASPubMed Google Scholar
Kaelin, W.G. Molecular basis of the VHL hereditary cancer syndrome. Nat. Rev. Cancer2, 673–682 (2002). CASPubMed Google Scholar
Maxwell, P.H. et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature399, 271–275 (1999). CASPubMed Google Scholar
Iliopoulos, O., Kibel, A., Gray, S. & Kaelin, W.G., Jr. Tumour supression by the human von Hippel-Lindau gene product. Nat. Med.1, 822–826 (1995). CASPubMed Google Scholar
Kondo, K., Kico, J., Nakamura, E., Lechpammer, M. & Kaelin, W.G.J. Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell1, 237–246 (2002). CASPubMed Google Scholar
Maranchie, J.K. et al. The contribution of VHL substrate binding and HIF1-α to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell1, 247–255 (2002). CASPubMed Google Scholar
Vaux, E.C. et al. Selection of mutant CHO cells with constitutive activation of the HIF system and inactivation of the von Hippel-Lindau tumor suppressor. J. Biol. Chem.276, 44323–44330 (2001). CASPubMed Google Scholar
Mack, F.A. et al. Loss of pVHL is sufficient to cause HIF dysregulation in primary cells but does not promote tumor growth. Cancer Cell3, 75–88 (2003). CASPubMedPubMed Central Google Scholar
Knudson, A.G. Chasing the cancer demon. Annu. Rev. Genet.34, 1–19 (2000). CASPubMed Google Scholar