Angiostatin induces and sustains dormancy of human primary tumors in mice (original) (raw)

References

  1. Folkman, J. What is the evidence that tumors are angiogenesis dependent?. J. Nati. Cancer Inst. 82, 4–6 (1989).
    Article Google Scholar
  2. Hori, A. et al. Suppression of solid tumor growth by immunoneutraliaing monoclonal antibody against human basic fibroblast growth factor. Cancer Res. 51, 6180–6184 (1991).
    CAS Google Scholar
  3. Kim, K.J. et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in vivo. Nature 362, 841–844 (1993).
    Article CAS Google Scholar
  4. Millauer, B., Shawver, L.K., Plate, K.H., Risau, W. & Ullrich, A. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367, 576–579 (1994).
    Article CAS Google Scholar
  5. O'Reilly, M.S. et al. Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79, 315–328 (1994).
    Article CAS Google Scholar
  6. Holmgren, L., O'Reilly, M.S. & Folkman, J. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Med. 1, 149–153 (1995).
    Article CAS Google Scholar
  7. Key, G. et al. New Ki-67-equivalent murine monoclonal antibodies (MIB 1-3) generated against bacterially expressed parts of the Ki-67 cDNA containing three base pair repetitive elements encoding for the Ki-67 epitope. Lab. Invest. 68, 629–636 (1993).
    CAS PubMed Google Scholar
  8. Gavrieli, Y., Sherman, Y. & Ben-Sasson, S.A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell Biol. 119, 493–501 (1992).
    Article CAS Google Scholar
  9. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Med. 1, 27–31 (1995).
    Article CAS Google Scholar
  10. Hamada, J., Cavanaugh, P.G., Lotan, O. & Nicolson, G.L. Separable growth and migration factors for large-cell lymphoma cells secreted by microvascular endothelial cells derived from target organs for metastasis. Br. J. Cancer 66, 349–354 (1992).
    Article CAS Google Scholar
  11. Nicosia, R.F., Tchao, R. & Leighton, J. Interactions between newly formed endothelial channels and carcinoma cells in plasma clot culture. Clin. Expl. Metastasis 4, 91–104 (1986).
    Article CAS Google Scholar
  12. Alon, T. et al. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nature Med. 1, 1024–1028 (1995).
    Article CAS Google Scholar
  13. Folkman, J. Tumor angiogenesis and tissue factor. Nature Med. 2, 167–168 (1996).
    Article CAS Google Scholar
  14. Teicher, B.A., Holden, S.A., Ara, G., Sotomayor, E.A. & Dong, H.Z. Potentiation of cytotoxic cancer therapies by TNP-470 alone and with other anti-angiogenic agents. Int. J. Cancer 57, 1–6 (1994).
    Article Google Scholar
  15. Folkman, J. The vascularization of tumors. Scientific American 234, 58–73 (1976).
    Article CAS Google Scholar
  16. Folkman, J. Clinical applications of angiogenesis research. New Engl. J. Medicine 333, 1757–1763 (1995).
    Article CAS Google Scholar
  17. Deutsch, D.G. & Mertz, E.T. Plasminogen: purification from human plasma by affinity chromatography. Science 170, 1095–1096 (1970).
    Article CAS Google Scholar
  18. Sottrup-Jensen, L., Claeys, H., Zajdel, M., Petersen, T.E. & Magnusson, S. The primary structure of human plasminogen: isolation of two lysine-binding fragments and one “mini-” plasminogen (MW 38,000) by elastase-catalyzed-specific limited proteolysis. in Progress in Chemical Fibrinolysis and Thrombolysis, vol. 3 (eds. Davidson, J.F., Rowan, R.M., Samama, M.M. & Desnoyers, P.C.) 191–209 (Raven Press, New York, 1978).
    Google Scholar
  19. Kenyon, B.M. et al. A model of angiogenesis in the mouse cornea. Invest. Opthal. Vis. Sci. (in the press).

Download references