Induction of basal cell carcinoma features in transgenic human skin expressing Sonic Hedgehog (original) (raw)
References
Ingham, P.W. Signalling by Hedgehog family proteins in Drosophila and vertebrate development. Opin. Gene Dev.5, 492–498 (1995). ArticleCAS Google Scholar
Nusslein-Volhard, C. & Wieschaus, E. Mutations affecting segment number and polarity in Drosophila. Nature287, 795–801 (1980). ArticleCAS Google Scholar
Chen, Y. & Struhl, G. Dual roles for patched in sequestering and transducing Hedgehog. Cell87, 553–563 (1996). ArticleCAS Google Scholar
Hammerschmidt, M., Brook, A. & McMahon, A.P. The world according to Hedgehog. Trends Genet.13, 14–21 (1997). ArticleCAS Google Scholar
Tabata, T. & Kornberg, T.B. Hedgehog is a signaling protein with a key role in patterning Drosophila imaginal discs. Cell76, 89–102 (1994). ArticleCAS Google Scholar
Riddle, R.D., Johnson, R.L., Laufer, J. & Tabin, C. Hedgehog mediates the polarizing activity of the ZPA. Cell75, 1401–1416 (1993). ArticleCAS Google Scholar
McMahon, A.P. & Chuang, P.-T. Hedgehogs in the clinic. Nature Med.2, 1308–1310 (1996). ArticleCAS Google Scholar
Echelard, Y. et al. Sonic Hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell75, 1417–1430 (1993). ArticleCAS Google Scholar
Chiang, C. et al. Cyclopia and defective axial patterning in mice lacking Sonic Hedgehog gene function. Nature383, 407–413 (1996). ArticleCAS Google Scholar
Belloni, E. et al. Identification of Sonic Hedgehog as a candidate gene responsible for holoprosencephaly. Nature Genet.14, 353–356 (1996). ArticleCAS Google Scholar
Roessler, E. et al. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nature Genet.14, 357–360 (1996). ArticleCAS Google Scholar
Hahn, H. et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell85, 841–851 (1996) ArticleCAS Google Scholar
Johnson, R.L. et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science272, 1668–1671 (1996). ArticleCAS Google Scholar
Gailani, M.R. et al. The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nature Genet.14, 78–81 (1996). ArticleCAS Google Scholar
Ingham, P.W. & Hidalgo, A. Regulation of wingless transcription in the Drosophila embryo. Development117, 283–291 (1993). CAS Google Scholar
Bitgood, M.J. & McMahon, A.P. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell-cell interaction in the mouse embryo. Dev. Bid.172, 126–138 (1995). ArticleCAS Google Scholar
Oro, A.E. et al. Basal cell carcinomas in mice overexpressing Sonic Hedgehog. Science276, 817–821 (in press). ArticleCAS Google Scholar
Jinnah, H.A. et al. Dopamine deficiency in a genetic mouse model of Lesch-Nyhan disease. J. Neurosci.14, 1164 (1994). ArticleCAS Google Scholar
Snouwaert, J.N. et al. A murine model of cystic fibrosis. Am.J. Resp. Crit. Care Med.151, S59 (1995). ArticleCAS Google Scholar
Porter, J.A. et al. The product of Hedgehog autoproteolytic cleavage active in local and long-range signalling. Nature374, 363–366 (1995). ArticleCAS Google Scholar
Bumbrot, D.A., Takada, R. & McMahon, A.P. Proteolytic processing yields two secreted forms of Sonic Hedgehog. Mol. Cell. Biol.5, 2294–2303 (1995). Article Google Scholar
Morales-Ducret, C.R., van de Rijn, M., LeBrun, D.P. & Smoller, B.R. bcl-2 expression in primary malignancies of the skin. Arch. Dermatol.131, 909–12 (1995). ArticleCAS Google Scholar
Medalle, D.A. et al. Evaluation of human skin reconstituted from composite grafts of cultured keratinocytes and human acellular dermis transplanted to athymic mice. J. Invest. Dermatol.107, 121–127 (1996). Article Google Scholar
Choate, K.A., Kinsella, T.M., Medalie, D.A., Morgan, J.R. & Khavari, P.A. Corrective gene transfer in the human skin disorder lamellar ichthyosis. Nature Med.2, 1263–1267 (1996). ArticleCAS Google Scholar
Lever, W.F. & Schaumberg-Lever, G. Histopathology of the Skin. pp. 622–634 (Lippincott, Philadelphia, 1990). Google Scholar
Miller, S.J. Biology of basal cell carcinoma (Part I). J. Am. Acad. Dermatol.24, 1–13 (1991). ArticleCAS Google Scholar
Miller, S.J. Biology of basal cell carcinoma (Part II). J. Am. Acad. Dermatol.24, 161–75 (1991). ArticleCAS Google Scholar
Fairley, J.A., Heintz, P.W., Neuburg, M., Diaz, L.A. & Giudice, G.J. Expression pattern of the bullous pemphigoid-180 antigen in normal and neoplastic epithelia. Br. J. Dermatol.133, 385–91 (1995). ArticleCAS Google Scholar
Savoia, P., Trusolino, L., Pepino, E., Cremona, O. & Marchisio, P.C. Expression and topography of integrins and basement membrane proteins in epidermal carcinomas: Basal but not squamous cell carcinomas display loss of alpha 6 beta 4 and BM-600/nicein. J. Invest. Dermatol.101, 352–8 (1993). ArticleCAS Google Scholar
Arbeit, J.M. Transgenic models of epidermal neoplasia and multistage carcinogenesis. Cancer Surv.26, 7–34 (1996). CASPubMed Google Scholar
van den Heuvel, M. & Ingham, P.W. Smoothened encodes a receptor-like serpentine protein required for Hedgehog signalling. Nature382, 547–551 (1996). ArticleCAS Google Scholar
Stone, D.M. et al. Vertebrate homologues of patched and smoothened compose a receptor for Sonic Hedgehog. Nature384, 129–133 (1996). ArticleCAS Google Scholar
Alcedo, J., Ayzenzon, M., Von Ohlen, T., Noll, M. & Hooper, J.E. The Drosophila smoothened gene encodes a seven-pass membrane protein, a putative receptor for the Hedgehog signal. Cell86, 221–232 (1996). ArticleCAS Google Scholar
Hardy, M.H. The secret life of the hair follicle. Trends Genet.8, 55–61 (1992). ArticleCAS Google Scholar
Sands, A.T., Abuin, A., Sanchez, A., Conti, C.J. & Bradley, A. High susceptibility to ultraviolet-induced carcinogenesis in mice lacking XPC. Nature377, 162–5 (1995). ArticleCAS Google Scholar
Marigo, V. et al. Cloning, expression, and chromosomal location of SHH and IHH: Two human homologues of the Drosophila segment polarity gene Hedgehog. Genomics28, 44–51 (1995). ArticleCAS Google Scholar
Kinsella, T.M. & Nolan, G.P. Use of Epstein-Barr virus episomes for rapid, stable, high-titer retrovirus production. Hum. Gene Ther.7, 1405–1413 (1996). ArticleCAS Google Scholar
Rheinwald, J.G. & Green, H. Serial cultivation of strains of human epidermal keratinocytes. Cell6, 331 (1975). ArticleCAS Google Scholar
Khavari, P.A., Peterson, C.L., Tamkun, J.W., Mendel, D.B. & Crabtree, G.R. BRG1 contains a conserved domain of the SWI2/SNF2 gene family necessary for normal mitotic growth and transcription. Nature366, 170 (1993). ArticleCAS Google Scholar
Murphy, G.F., Flynn, T.C., Rice, R.H. & Pinkus, G.S. Involucrin expression in normal and neoplastic human skin: A marker for keratinocyte differentiation. J. Invest. Dermatol.82, 453–457 (1984). ArticleCAS Google Scholar
Dale, B.A., Gown, A.M., Fleckman, M.D., Kimball, J.R. & Resing, K.A. Characterization of two monoclonal antibodies to human epidermal keratohyalin: Reactivity with filaggrin and related proteins. J. Invest. Dermatol.88, 307–313 (1987). Article Google Scholar
Liu, Z. et al. A passive transfer model of the organ-specific autoimmune disease, bullous pemphigoid, using antibodies generated against the hemidesmosomal antigen, BP180. J. Clin. Invest.92, 2480 (1993). ArticleCAS Google Scholar
Marinkovich, M.P. et al. Basement membrane proteins kalinin and nicein are structurally and immunologically identical. Lab. Invest.69, 295–9 (1993). CAS Google Scholar
Purkis, P.E. et al. Antibody markers of basal cells in complex epithelia. J. Cell Sci.97, 39–50 (1990). Google Scholar