Ware, J.A. & Heistad, D.D. Platelet-endothelium interactions. N. Engl. J. Med.328, 628–635 (1993). ArticleCAS Google Scholar
Gross, P.L. & Aird, W.C. The endothelium and thrombosis. Semin. Thromb. Hemost.26, 463–478 (2000). ArticleCAS Google Scholar
Olsen, B.R. in Guidebook to the Extracellular Matrix and Adhesion Proteins (eds, Kreis, T. & Vale, R.) 35–37 (Oxford University Press, Oxford, 1993). Google Scholar
Saelman, E.U.M. et al. Platelet adhesion to collagen types I through VIII under conditions of stasis and flow is mediated by GPIa/IIa (α2β1-Integrin). Blood83, 1244–1250 (1994). CASPubMed Google Scholar
Nieuwenhuis, H.K., Akkerman, J.W.N., Houdijk, W.P.M. & Sixma, J.J. Human blood platelets showing no response to collagen fail to express surface glycoprotein Ia. Nature318, 470–472 (1985). ArticleCAS Google Scholar
Nieuwenhuis, H.K., Sakariassen, K.S., Houdijk, W.P.M., Nievelstein, P.F.E.M. & Sixma, J.J. Deficiency of platelet membrane glycoprotein Ia associated with a decreased platelet adhesion to subendothelium: A defect in platelet spreading. Blood68, 692–695 (1986). CASPubMed Google Scholar
Moroi, M., Jung, S.M., Okuma, M. & Shinmyozu, K. A patient with platelets deficient in glycoprotein VI that lack both collagen-induced aggregation and adhesion. J. Clin. Invest.84, 1440–1445 (1989). ArticleCAS Google Scholar
Holtkotter, O. et al. Integrin α 2-deficient mice develop normally, are fertile, but display partially defective platelet interaction with collagen. J. Biol. Chem.277, 10789–10794 (2002). ArticleCAS Google Scholar
Savage, B., Ginsberg, M.H. & Ruggeri, Z.M. Influence of fibrillar collagen structure on the mechanisms of platelet thrombus formation under flow. Blood94, 2704–2715 (1999). CASPubMed Google Scholar
Watson, S., Berlanga, O., Best, D. & Frampton, J. Update on collagen receptor interactions in platelets: Is the two-model still valid? Platelets11, 252–258 (2000). ArticleCAS Google Scholar
Keely, P.J. & Parise, L.V. The α2β1 integrin is a necessary co-receptor for collagen-induced activation of syk and subsequent phosphorylation of phospholipase Cγ2 in platelets. J. Biol. Chem.271, 26668–26676 (1996). ArticleCAS Google Scholar
Patil, S., Newman, D.K. & Newman, P.J. Platelet endothelial cell adhesion molecule-1 serves as an inhibitor receptor that modulates platelet responses to collagen. Blood97, 1727–1732 (2001). ArticleCAS Google Scholar
Savage, B., Saldivar, E. & Ruggeri, Z.M. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell84, 289–297 (1996). ArticleCAS Google Scholar
Savage, B., Almus-Jacobs, F. & Ruggeri, Z.M. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell94, 657–666 (1998). ArticleCAS Google Scholar
Balbona, K. et al. Fibulin binds to itself and to the carboxy-terminal heparin-binding region of fibronectin. J. Biol. Chem.267, 20120–20125 (1992). CASPubMed Google Scholar
Tran, H. et al. The interaction of fibulin-1 with fibrinogen: A potential role in hemostasis and thrombosis. J. Biol. Chem.270, 19458–19464 (1995). ArticleCAS Google Scholar
Godyna, S., Diaz-Ricart, M. & Argraves, W.S. Fibulin-1 mediates platelet adhesion via a bridge of fibrinogen. Blood88, 2569–2577 (1996). CASPubMed Google Scholar
Hynes, R.O. Fibronectins (Springer-Verlag, New York, 1989). Google Scholar
Beumer, S., IJsseldijk, M.J., de Groot, P.G. & Sixma, J.J. Platelet adhesion to fibronectin in flow: dependence on surface concentration and shear rate, role of platelet membrane glycoproteins GP IIb/IIIa and VLA-5, and inhibition by heparin. Blood84, 3724–3733 (1994). CASPubMed Google Scholar
Beumer, S. et al. Platelet adhesion to fibronectin in flow: the importance of von Willebrand factor and glycoprotein Ib. Blood86, 3452–3460 (1995). CASPubMed Google Scholar
Ni, H. et al. Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J. Clin. Invest.106, 385–392 (2000). ArticleCAS Google Scholar
Savage, B., Cattaneo, M. & Ruggeri, Z.M. Mechanisms of platelet aggregation. Curr. Opin. Hematol.8, 270–276 (2001). ArticleCAS Google Scholar
Coughlin, S.R. Thrombin signalling and protease-activated receptors. Nature407, 258–264 (2000). ArticleCAS Google Scholar
Sambrano, G.R., Weiss, E.J., Zheng, Y.-W., Huang, W. & Coughlin, S.R. Role of thrombin signalling in platelets in haemostasis and thrombosis. Nature413, 74–78 (2001). ArticleCAS Google Scholar
Covic, L., Gresser, A.L. & Kuliopulos, A. Biphasic kinetics of activation and signaling for PAR1 and PAR4 thrombin receptors in platelets. Biochemistry39, 5458–5467 (2000). ArticleCAS Google Scholar
Mazzucato, M. et al. Characterization of the initial α-thrombin interaction with glycoprotein Ibα in relation to platelet activiation. J. Biol. Chem.273, 1880–1887 (1998). ArticleCAS Google Scholar
Ramakrishnan, V. et al. A thrombin receptor function for platelet glycoprotein Ib-IX unmasked by cleavage of glycoprotein V. Proc. Natl. Acad. Sci. USA98, 1823–1828 (2001). ArticleCAS Google Scholar
Soslau, G. et al. Unique pathway of thrombin-induced platelet aggregation mediated by glycoprotein Ib. J. Biol. Chem.276, 21173–21183 (2001). ArticleCAS Google Scholar
Gachet, C. Platelet activation by ADP: the role of ADP antagonists. Ann. Med.32 Suppl 1, 15–20 (2000). CASPubMed Google Scholar
Woodside, D.G., Liu, S. & Ginsberg, M.H. Integrin activation. Thromb. Haemost.86, 316–323 (2001). ArticleCAS Google Scholar
Ni, H. et al. Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J. Clin. Invest.106, 385–392 (2000). ArticleCAS Google Scholar
Andre, P. et al. CD40L stabilizes arterial thrombi by a β3 integrin-dependent mechanism. Nature Med.8, 247–252 (2002). ArticleCAS Google Scholar
Garlichs, C.D. et al. Upregulation of CD40 and CD40 ligand (CD154) in patients with moderate hypercholesterolemia. Circulation104, 2395–2400 (2001). ArticleCAS Google Scholar
Tangelder, G.J., Slaaf, D.W., Arts, T. & Reneman, R.S. Wall shear rate in arterioles in vivo: least estimates from platelet velocity profiles. Am. J. Physiol.254, H1059–H1064 (1988). CASPubMed Google Scholar
Savage, B., Saldivar, E. & Ruggeri, Z.M. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell84, 289–297 (1996). ArticleCAS Google Scholar
Savage, B., Almus-Jacobs, F. & Ruggeri, Z.M. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell94, 657–666 (1998). ArticleCAS Google Scholar
Mazzucato, M., Pradella, P., Cozzi, M.R., De Marco, L. & Ruggeri, Z.M. Sequential cytoplasmic calcium signals in a two-stage platelet activation process induced by the glycoprotein Ibα mechanoreceptor. Blood, 100, 2793–2800 (2002). ArticleCAS Google Scholar
Ruggeri, Z.M., De Marco, L., Gatti, L., Bader, R. & Montgomery, R.R. Platelets have more than one binding site for von Willebrand factor. J. Clin. Invest.72, 1–12 (1983). ArticleCAS Google Scholar
Goto, S., Salomon, D.R., Ikeda, Y. & Ruggeri, Z.M. Characterization of the unique mechanism mediating the shear-dependent binding of soluble von Willebrand factor to platelets. J. Biol. Chem.270, 23352–23361 (1995). ArticleCAS Google Scholar
Ruggeri, Z.M., Dent, J.A. & Saldivar, E. Contribution of distinct adhesive interactions to platelet aggregation in flowing blood. Blood94, 172–178 (1999). CASPubMed Google Scholar
Savage, B., Sixma, J.J. & Ruggeri, Z.M. Functional self-association of von Willebrand factor during platelet adhesion under flow. Proc. Natl. Acad. Sci. USA99, 425–430 (2002). ArticleCAS Google Scholar
Siediecki, C.A. et al. Shear-dependent changes in the three-dimensional structure of human von Willebrand Factor. Blood88, 2939–2950 (1996). Google Scholar
Zimmerman, T.S., Dent, J.A., Ruggeri, Z.M. & Nannini, L.H. Subunit composition of plasma von Willebrand factor. Cleavage is present in normal individuals, increased in IIA and IIB von Willebrand disease, but minimal in variants with aberrant structure of individual oligomers (Types IIC, IID and IIE). J. Clin. Invest.77, 947–951 (1986). ArticleCAS Google Scholar
Dent, J.A., Berkowitz, S.D., Ware, J., Kasper, C.K. & Ruggeri, Z.M. Identification of a cleavage site directing the immunochemical detection of molecular abnormalities in type IIA von Willebrand factor. Proc. Natl. Acad. Sci. USA87, 6306–6310 (1990). ArticleCAS Google Scholar
Furlan, M. et al. Deficient activity of von Willebrand factor-cleaving protease in chronic relapsing thrombotic thrombocytopenic purpura. Blood89, 3097–3103 (1997). CASPubMed Google Scholar
Tsai, H.M. Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood87, 4235–4244 (1996). CAS Google Scholar
Levy, G.G. et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature413, 488–494 (2001). ArticleCAS Google Scholar
Xie, L., Chesterman, C.N. & Hogg, P.J. Control of von Willebrand factor multimer size by thrombospondin-1. J. Exp. Med.193, 1341–1349 (2001). ArticleCAS Google Scholar
Vivekananthan, D.P., Patel, V.B. & Moliterno, D.J. Glycoprotein IIb/IIa antagonism and fibrinolytic therapy for acute myocardial infarction. J. Interv. Cardiol.15, 131–139 (2002). Article Google Scholar
Talley, J.D. Clinical trials of glycoprotein IIb/IIIa inhibitors. J. Interv. Cardiol.14, 129–142 (2001). ArticleCAS Google Scholar
Quinn, M.J., Plow, E.F. & Topol, E.J. Platelet glycoprotein IIb/IIa inhibitors: recognition of a two-edged sword? Circulation106, 379–385 (2002). ArticleCAS Google Scholar
Abumiya, T. et al. Integrin αIIbβ3 inhibitor preserves microvascular patency in experimental acute focal cerebral ischemia. Stroke31, 1402–1410 (2000). ArticleCAS Google Scholar
Barnett, H.J.M. et al. Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. N. Engl. J. Med.339, 1415–1425 (1998). ArticleCAS Google Scholar
Inzitari, D., Eliasziw, M., Sharpe, B.L., Fox, A.J. & Barnett, H.J.M. Risk factors and outcome of patients with carotid artery stenosis presenting with lacunar stroke. Neurology54, 660–666 (2000). ArticleCAS Google Scholar
Inzitari, D. et al. The causes and risk of stroke in patients with asymptomatic internal-carotid-artery stenosis. N. Engl. J. Med.342, 1693–1700 (2000). ArticleCAS Google Scholar
Bornstein, N.M. Antiplatelet drugs: how to select them and possibilities of combined treatment. Cerebrovasc. Dis.Suppl 1, 96–99 (2001). Article Google Scholar
Taylor, D.W. et al. Low-dose and high-dose acetylsalicylic acid for patients undergoing carotid endarterectomy: a randomised controlled trial. Lancet353, 2179–2184 (1999). ArticleCAS Google Scholar
Laird, J.R. The management of acute limb ischemia: techniques for dealing with thrombus. J. Interv. Cardiol.14, 539–546 (2001). ArticleCAS Google Scholar
Matsagas, M.I., Geroulakos, G. & Mikhailidis, D.P. The role of platelets in peripheral arterial disease: therapeutic implications. Ann. Vasc. Surg.16, 246–258 (2002). ArticleCAS Google Scholar
Ruberg, F.L., Leopold, J.A. & Loscalzo, J. Atherothrombosis: plaque instability and thrombogenesis. Prog. Cardiovasc. Dis.44, 381–394 (2002). ArticleCAS Google Scholar
Strony, J., Beaudoin, A., Brands, D. & Adelman, B. Analysis of shear stress and hemodynamic factors in a model of coronary artery stenosis and thrombosis. Am. J. Physiol. Heart Circ. Physiol.265, H1787–H1796 (1993). ArticleCAS Google Scholar
Mailhac, A. et al. Effect of an eccentric severe stenosis on fibrin(ogen) deposition on severely damaged vessel wall in arterial thrombosis. Relative contribution of fibrin(ogen) and platelets. Circulation90, 988–996 (1994). ArticleCAS Google Scholar
Goto, S. et al. Enhanced shear-induced platelet aggregation in acute myocardial infarction. Circulation99, 608–613 (1999). ArticleCAS Google Scholar
Balasubramanian, V., Grabowski, E., Bini, A. & Nemerson, Y. Platelets, circulating tissue factor, and fibrin colocalize in ex vivo thrombi: Real-time fluorescence images of thrombus formation and propagation under defined flow conditions. Blood100, 2787–2792 (2002). ArticleCAS Google Scholar
Weiss, E.J. et al. A polymorphism of a platelet glycoprotein receptor as an inherited risk factor for coronary thrombosis. N. Engl. J. Med.334, 1090–1094 (1996). ArticleCAS Google Scholar
Kunicki, T.J. & Ruggeri, Z.M. Platelet collagen receptors and risk prediction in stroke and coronary artery disease. Circulation104, 1451–1453 (2001). ArticleCAS Google Scholar
Ross, R. Atherosclerosis—an inflammatory disease. N. Engl. J. Med.340, 115–126 (1999). ArticleCAS Google Scholar
Sachais, B.S. Platelet-endothelial interactions in atherosclerosis. Curr. Atheroscler. Rep.3, 412–416 (2001). ArticleCAS Google Scholar
Pratico, D., Tillmann, C., Zhang, Z.-B., Li, H. & Fitzgerald, G.A. Acceleration of atherogenesis by COX-1-dependent prostanoid formation in low density lipoprotein receptor knockout mice. Proc. Natl. Acad. Sci. USA98, 3358–3363 (2001). ArticleCAS Google Scholar
Theilmeier, G. et al. Endothelial von Willebrand factor recruits platelets to atherosclerosis-prone sites in response to hypercholesterolemia. Blood99, 4486–4493 (2002). ArticleCAS Google Scholar
Methia, N., Andre, P., Denis, C.V., Economopoulos, M. & Wagner, D.D. Localized reduction of atherosclerosis in von Willebrand factor-deficient mice. Blood98, 1424–1428 (2001). ArticleCAS Google Scholar
Willerson, J.T. Systemic and local inflammation in patients with unstable atherosclerotic plaques. Prog. Cardiovasc. Dis.44, 469–478 (2002). ArticleCAS Google Scholar
Sjobring, U., Ringdahl, U. & Ruggeri, Z.M. Induction of platelet thrombi by bacteria and antibodies. (Blood, published online August 1, 2002, doi:10.1182/blood-2002-01-0069).
Shpilberg, O. et al. Patients with Glanzmann thrombasthenia lacking platelet glycoprotein αIIbβ3 (GPIIb/IIIa) and αvβ3 receptors are not protected from atherosclerosis. Circulation105, 1044–1048 (2002). ArticleCAS Google Scholar
Celi, A., Lorenzet, R., Furie, B. & Furie, B.C. Platelet-leukocyte-endothelial cell interaction on the blood vessel wall. Sem. Hematol.34, 327–335 (1997). CAS Google Scholar
Ross, R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature362, 801–809 (1993). ArticleCAS Google Scholar
Sachais, B.S. et al. Platelet factor 4 binds to low-density lipoprotein receptors and disrupts the endocytic machinery, resulting in retention of low-density lipoprotein on the cell surface. Blood99, 3613–3622 (2002). ArticleCAS Google Scholar
De Meyer, G.R. et al. Platelet phagocytosis and processing of β-amyloid precursor protein as a mechanism of macrophage activation in atherosclerosis. Circ. Res.90, 1145–1146 (2002). Article Google Scholar