The RAB25 small GTPase determines aggressiveness of ovarian and breast cancers (original) (raw)

References

  1. Pinkel, D. et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet. 20, 207–211 (1998).
    Article CAS Google Scholar
  2. Goldenring, J.R., Shen, K.R., Vaughan, H.D. & Modlin, I.M. Identification of a small GTP-binding protein, Rab25, expressed in the gastrointestinal mucosa, kidney, and lung. J. Biol. Chem. 268, 18419–18422 (1993).
    CAS Google Scholar
  3. Wang, X., Kumar, R., Navarre, J., Casanova, J.E. & Goldenring, J.R. Regulation of vesicle trafficking in Madin-Darby canine kidney cells by Rab11a and Rab25 . J. Biol. Chem. 275, 29138–29146 (2000).
    Article CAS Google Scholar
  4. Shayesteh, L. et al. PI3KCA is implicated as an oncogene in ovarian cancer. Nat. Genet. 21, 99–102 (1999).
    Article CAS Google Scholar
  5. Fukushi, Y., Sato, S., Yokoyama, Y., Kudo, K., Maruyama, H., & Saito, Y. Detection of numerical aberrations in chromosome 17 and c-erbB2 gene amplification in epithelial ovarian cancer using recently established dual color FISH. Eur. J. Gynecol. Oncol. 22, 23–25 (2001).
    CAS Google Scholar
  6. Berchuck, A. & Carney, M. Human ovarian cancer of the surface epithelium. Biochem. Pharmacol. 54, 541–544 (1997).
    Article CAS Google Scholar
  7. Anand, N. et al. Protein elongation factor EEF1A2 is a putative oncogene in ovarian cancer. Nat. Genet. 31, 301–305 (2002).
    Article CAS Google Scholar
  8. Cheng, J.Q. et al. AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc. Natl. Acad. Sci. USA 89, 9267–9271 (1992).
    Article CAS Google Scholar
  9. Anzick, S.L. et al. AIB1, a steroid receptor co-activator amplified in breast and ovarian cancer. Science 277, 965–967 (1997).
    Article CAS Google Scholar
  10. Suzuki, S. et al. An approach to analysis of large-scale correlations between genome changes and clinical endpoints in ovarian cancer. Cancer Res. 60, 5382–5385 (2000).
    CAS Google Scholar
  11. Patael-Karasik, Y. et al. Comparative genomic hybridization in inherited and sporadic ovarian tumors in Israel. Cancer Genet. Cytogenet. 121, 26–32 (2000).
    Article CAS Google Scholar
  12. Kiechle, M., Jacobsen, A., Schwarz-Boeger, U., Hedderich, J., Pfisterer, J. & Arnold, N. Comparative genomic hybridization detects genetic inbalance in primary ovarian carcinomas as correlated with grade of differentiation. Cancer 91, 534–540 (2001).
    Article CAS Google Scholar
  13. Zudaire, I. et al. Genomic imbalances detected by comparative genomic hybridization are prognostic markers in invasive ductal breast carcinomas. Histopathology 40, 547–555 (2002).
    Article CAS Google Scholar
  14. Lu, Y.J., Hing, S., Williams, R., Pinkerton, R., Shipley, J. & Pritchard-Jones, K. UK Children's Cancer Study Group Wilms' tumor group. Chromosome 1q expression profiling and relapse in Wilms' tumour. Lancet 9330, 385–386 (2002).
    Article Google Scholar
  15. Lu, K.H. et al. Selection of potential markers for epithelial ovarian cancer with gene expression arrays and recursive descent partition analysis. Clin. Cancer Res. 10, 3291–3300 (2004).
    Article CAS Google Scholar
  16. Schaner, M.E. et al. Gene expression patterns in ovarian carcinomas. Mol. Biol. Cell. 14, 4376–4386 (2003).
    Article CAS Google Scholar
  17. Sorlie, T. et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl. Acad. Sci. USA 100, 8418–8423 (2003).
    Article CAS Google Scholar
  18. Calvo, A. et al. Alterations in gene expression profiles during prostate cancer progression: functional correlations to tumorigenicity and down-regulation of selenoprotein-P in mouse and human tumors. Cancer Res. 62, 5325–5335 (2002).
    CAS Google Scholar
  19. Mor, O. et al. Molecular analysis of transitional cell carcinoma using cDNA microarray. Oncogene 22, 7702–7710 (2003).
    Article CAS Google Scholar
  20. Wang, W. et al. Single cell behavior in metastatic primary mammary tumors correlated with gene expression patterns revealed by molecular profiling. Cancer Res. 62, 6278–6288 (2002).
    CAS Google Scholar
  21. Liu, J. et al. A genetically defined model for human ovarian cancer. Cancer Res. 64, 1655–1663 (2004)
    Article CAS Google Scholar
  22. Milhavet, O., Gary, D.S. & Mattson, M.P. RNA interference in biology and medicine. Pharmacol. Rev. 55, 629–648 (2003).
    Article Google Scholar
  23. Gross, A., McDonnell, J.M. & Korsmeyer, S.J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899–1911 (1999).
    Article CAS Google Scholar
  24. Wei, M. et al. Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001).
    Article CAS Google Scholar
  25. Degenhardt, K., Chen, G., Lindsten, T. & White, E. BAX and BAK mediate p53-independent suppression of tumorigenesis. Cancer Cell 2, 193–203 (2002).
    Article CAS Google Scholar
  26. Lu, Y. et al. The PTEN/MMAC1/TEP tumor suppressor gene decreases cell growth and induces apoptosis and anoikis in breast cancer cells. Oncogene 18, 7034–7045 (1999).
    Article CAS Google Scholar
  27. Mills, G.B. et al. Role of abnormalities of PTEN and the phosphatidylinositol 3′ kinase pathway in breast and ovarian tumorigenesis, prognosis and therapy. Semin. Oncol. 28, S125–S141 (2001).
    Article Google Scholar
  28. Kennedy, S.G. et al. The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev. 11, 701–713 (1997).
    Article CAS Google Scholar
  29. Delcroix, J.D., Valletta, J.S., Wu, C., Hunt, S.J., Kowal, A.S. & Mobley, W.C. NGF signaling in sensory neurons: evidence that early endosomes carry NGF retrograde signals. Neuron 39, 69–84 (2003).
    Article CAS Google Scholar

Download references