Adiponectin-mediated modulation of hypertrophic signals in the heart (original) (raw)

References

  1. Reilly, M.P. & Rader, D.J. The metabolic syndrome: more than the sum of its parts? Circulation 108, 1546–1551 (2003).
    Article Google Scholar
  2. Ouchi, N., Kihara, S., Funahashi, T., Matsuzawa, Y. & Walsh, K. Obesity, adiponectin and vascular inflammatory disease. Curr. Opin. Lipidol. 14, 561–566 (2003).
    Article CAS Google Scholar
  3. Ilercil, A. et al. Relationship of impaired glucose tolerance to left ventricular structure and function: The Strong Heart Study. Am. Heart J. 141, 992–998 (2001).
    Article CAS Google Scholar
  4. Rutter, M.K. et al. Impact of glucose intolerance and insulin resistance on cardiac structure and function: sex-related differences in the Framingham Heart Study. Circulation 107, 448–454 (2003).
    Article CAS Google Scholar
  5. Schannwell, C.M., Schneppenheim, M., Perings, S., Plehn, G. & Strauer, B.E. Left ventricular diastolic dysfunction as an early manifestation of diabetic cardiomyopathy. Cardiology 98, 33–39 (2002).
    Article CAS Google Scholar
  6. Kahn, B.B. & Flier, J.S. Obesity and insulin resistance. J. Clin. Invest. 106, 473–481 (2000).
    Article CAS Google Scholar
  7. Scherer, P.E., Williams, S., Fogliano, M., Baldini, G. & Lodish, H.F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270, 26746–26749 (1995).
    Article CAS Google Scholar
  8. Maeda, N. et al. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nat. Med. 8, 731–737 (2002).
    Article CAS Google Scholar
  9. Kubota, N. et al. Disruption of adiponectin causes insulin resistance and neointimal formation. J. Biol. Chem. 277, 25863–25866 (2002).
    Article CAS Google Scholar
  10. Shibata, R. et al. Adiponectin stimulates angiogenesis in response to tissue ischemia through stimulation of amp-activated protein kinase signaling. J. Biol. Chem. 279, 28670–28674 (2004).
    Article CAS Google Scholar
  11. Xiao, L. et al. MEK1/2–ERK1/2 mediates alpha1-adrenergic receptor-stimulated hypertrophy in adult rat ventricular myocytes. J. Mol. Cell. Cardiol. 33, 779–787 (2001).
    Article CAS Google Scholar
  12. Esposito, G. et al. Cardiac overexpression of a G(q) inhibitor blocks induction of extracellular signal-regulated kinase and c-Jun NH(2)-terminal kinase activity in in vivo pressure overload. Circulation 103, 1453–1458 (2001).
    Article CAS Google Scholar
  13. Kobayashi, H. et al. Selective suppression of endothelial cell apoptosis by the high molecular weight form of adiponectin. Circ. Res. 94, e27–e31 (2004).
    Article CAS Google Scholar
  14. Tomas, E. et al. Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc. Natl. Acad. Sci. USA 99, 16309–16313 (2002).
    Article CAS Google Scholar
  15. Yamauchi, T. et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288–1295 (2002).
    Article CAS Google Scholar
  16. Wu, X. et al. Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes 52, 1355–1363 (2003).
    Article CAS Google Scholar
  17. Ouchi, N. et al. Adiponectin stimulates angiogenesis by promoting cross-talk between AMP-activated protein kinase and Akt signaling in endothelial cells. J. Biol. Chem. 279, 1304–1309 (2004).
    Article CAS Google Scholar
  18. Chan, A.Y., Soltys, C.L., Young, M.E., Proud, C.G. & Dyck, J.R. Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte. J. Biol. Chem. 279, 32771–32179 (2004).
    Article CAS Google Scholar
  19. Nagata, D., Mogi, M. & Walsh, K. AMP-activated protein kinase (AMPK) signaling in endothelial cells is essential for angiogenesis in response to hypoxic stress. J. Biol. Chem. 278, 31000–31006 (2003).
    Article CAS Google Scholar
  20. Mu, J., Brozinick, J.T., Jr, Valladares, O., Bucan, M. & Birnbaum, M.J. A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol. Cell 7, 1085–1094 (2001).
    Article CAS Google Scholar
  21. Kudo, N., Barr, A.J., Barr, R.L., Desai, S. & Lopaschuk, G.D. High rates of fatty acid oxidation during reperfusion of ischemic hearts are associated with a decrease in malonyl-CoA levels due to an increase in 5′-AMP-activated protein kinase inhibition of acetyl-CoA carboxylase. J. Biol. Chem. 270, 17513–17520 (1995).
    Article CAS Google Scholar
  22. Tian, R., Musi, N., D'Agostino, J., Hirshman, M.F. & Goodyear, L.J. Increased adenosine monophosphate-activated protein kinase activity in rat hearts with pressure-overload hypertrophy. Circulation 104, 1664–1669 (2001).
    Article CAS Google Scholar
  23. Pimentel, D.R. et al. Reactive oxygen species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes. Circ. Res. 89, 453–460 (2001).
    Article CAS Google Scholar
  24. Rogers, J.H. et al. RGS4 causes increased mortality and reduced cardiac hypertrophy in response to pressure overload. J. Clin. Invest. 104, 567–576 (1999).
    Article CAS Google Scholar

Download references