Hay, B.A., Huh, J.R. & Guo, M. The genetics of cell death: approaches, insights and opportunities in Drosophila. Nat. Rev. Genet.5, 911–922 (2004). ArticleCASPubMed Google Scholar
Abraham, M.C. & Shaham, S. Death without caspases, caspases without death. Trends Cell Biol.14, 184–193 (2004). ArticleCASPubMed Google Scholar
Boyce, M., Degterev, A. & Yuan, J. Caspases: an ancient cellular sword of Damocles. Cell Death Differ.11, 29–37 (2004). ArticleCASPubMed Google Scholar
Golstein, P., Aubry, L. & Levraud, J.P. Cell-death alternative model organisms: why and which? Nat. Rev. Mol. Cell Biol.4, 798–807 (2003). ArticleCASPubMed Google Scholar
Martin, S.J. & Green, D.R. Protease activation during apoptosis: death by a thousand cuts? Cell82, 349–352 (1995). ArticleCASPubMed Google Scholar
Garrido, C. & Kroemer, G. Life's smile, death's grin: vital functions of apoptosis-executing proteins. Curr. Opin. Cell Biol.16, 639–646 (2004). ArticleCASPubMed Google Scholar
Martinon, F. & Tschopp, J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell117, 561–574 (2004). ArticleCASPubMed Google Scholar
Tinel, A. & Tschopp, J. The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science304, 843–846 (2004). ArticleCASPubMed Google Scholar
Enoksson, M. et al. Caspase-2 permeabilizes the outer mitochondrial membrane and disrupts the binding of cytochrome c to anionic phospholipids. J. Biol. Chem.279, 49575–49578 (2004). ArticleCASPubMed Google Scholar
Kroemer, G. et al. Classification of cell death: Recommendations of the Nomenclature Committee on Cell death. Cell Death Differ. (in the press) (2005).
Fischer, U., Janicke, R.U. & Schulze-Osthoff, K. Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ.10, 76–100 (2003). ArticleCASPubMed Google Scholar
Xiang, J., Chao, D.T. & Korsmeyer, S.J. Bax-induced cell death may not require interleukin 1β-converting enzyme-like proteases. Proc. Natl Acad. Sci. USA93, 14559–14563 (1996). ArticleCASPubMedPubMed Central Google Scholar
Carter, B.Z. et al. Caspase-independent cell death in AML: caspase-inhibition in vitro with pan-caspase inhibitors or in vivo by XIAP or Survivin does not affect cell survival or prognosis. Blood102, 4179–4186 (2003). ArticleCASPubMed Google Scholar
Kanzawa, T. et al. Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene24, 980–991 (2005). ArticleCASPubMed Google Scholar
Nicholson, D.W. From bench to clinic with apoptosis-based therapeutic agents. Nature407, 810–816 (2000). ArticleCASPubMed Google Scholar
Methot, N. et al. Differential efficacy of caspase inhibitors on apoptosis markers during sepsis in rats and implication for fractional inhibition requirements for therapeutics. J. Exp. Med.199, 199–207 (2004). ArticleCASPubMedPubMed Central Google Scholar
Saleh, M. et al. Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature429, 75–79 (2004). ArticleCASPubMed Google Scholar
Chun, H.J. et al. Pleiotropic defects in lymphocyte activation caused by caspase-8 mutations lead to human immunodeficiency. Nature419, 395–399 (2002). ArticleCASPubMed Google Scholar
Kang, T.B. et al. Caspase-8 serves both apoptotic and nonapoptotic roles. J. Immunol.173, 2976–2984 (2004). ArticleCASPubMed Google Scholar
Sordet, O. et al. Specific involvement of caspases in the differentiation of monocytes into macrophages. Blood100, 4446–4453 (2002). ArticleCASPubMed Google Scholar
Miura, M. et al. A crucial role of caspase-3 in osteogenic differentiation of bone marrow stromal stem cells. J. Clin. Invest.114, 1704–1713 (2004). ArticleCASPubMedPubMed Central Google Scholar
Fernando, P., Kelly, J.F., Balazsi, K., Slack, R.S. & Megeney, L.A. Caspase 3 activity is required for skeletal muscle differentiation. Proc. Natl Acad. Sci. USA99, 11025–11030 (2002). ArticleCASPubMedPubMed Central Google Scholar
Black, S. et al. Syncytial fusion of human trophoblast depends on caspase 8. Cell Death Differ.11, 90–98 (2004). ArticleCASPubMed Google Scholar
McLaughlin, B. The kinder side of killer proteases: caspase activation contributes to neuroprotection and CNS remodeling. Apoptosis9, 111–121 (2004). ArticleCASPubMedPubMed Central Google Scholar
Desagher, S. et al. Phosphorylation of bid by casein kinases I and II regulates its cleavage by caspase 8. Mol. Cell8, 601–611 (2001). ArticleCASPubMed Google Scholar
McLaughlin, B. et al. Caspase 3 activation is essential for neuroprotection in preconditioning. Proc. Natl Acad. Sci. USA100, 715–720 (2003). ArticleCASPubMedPubMed Central Google Scholar
Garnier, P., Ying, W. & Swanson, R.A. Ischemic preconditioning by caspase cleavage of poly(ADP-ribose) polymerase-1. J. Neurosci.23, 7967–7973 (2003). ArticleCASPubMedPubMed Central Google Scholar
Yang, J.Y. et al. Partial cleavage of RasGAP by caspases is required for cell survival in mild stress conditions. Mol. Cell. Biol.24, 10425–10436 (2004). ArticleCASPubMedPubMed Central Google Scholar
Cauwels, A., Janssen, B., Waeytens, A., Cuvelier, C. & Brouckaert, P. Caspase inhibition causes hyperacute TNF shock via oxidative stress and PLA2. Nat. Immunol.4, 387–393 (2003). ArticleCASPubMed Google Scholar
Vercammen, D. et al. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J. Exp. Med.187, 1477–1485 (1998). ArticleCASPubMedPubMed Central Google Scholar
Foghsgaard, L. et al. Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J. Cell Biol.153, 999–1010 (2001). ArticleCASPubMedPubMed Central Google Scholar
Jaattela, M. & Tschopp, J. Caspase-independent cell death in T lymphocytes. Nat. Immunol.4, 416–423 (2003). ArticlePubMedCAS Google Scholar
Yu, L. et al. Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science304, 1500–1502 (2004). ArticleCASPubMed Google Scholar
Shimizu, S. et al. A role of Bcl-2 family of proteins in non-apoptotic programmed cell death dependent on autophagy genes. Nat. Cell Biol.6, 1221–1228 (2004). ArticleCASPubMed Google Scholar
Hirsch, T. et al. The apoptosis-necrosis paradox. Apoptogenic proteases activated after mitochondrial permeability transition determine the mode of cell death. Oncogene15, 1573–1582 (1997). ArticleCASPubMed Google Scholar
Glazner, G.W., Chan, S.L., Lu, C. & Mattson, M.P. Caspase-mediated degradation of AMPA receptor subunits: a mechanism for preventing excitotoxic necrosis and ensuring apoptosis. J. Neurosci.20, 3641–3649 (2000). ArticleCASPubMedPubMed Central Google Scholar
Lassus, P., Opitz-Araya, X. & Lazebnik, Y. Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science297, 1352–1354 (2002). ArticleCASPubMed Google Scholar
Vanden Berghe, T. et al. Differential signaling to apoptotic and necrotic cell death by Fas-associated death domain protein FADD. J. Biol. Chem.279, 7925–7933 (2004). ArticleCASPubMed Google Scholar
Zhu, C. et al. Involvement of apoptosis-inducing factor in neuronal death after hypoxia-ischemia in the neonatal rat brain. J. Neurochem.86, 306–317 (2003). ArticleCASPubMed Google Scholar
Hisatomi, T. et al. Relocalization of apoptosis-inducing factor in photoreceptor apoptosis induced by retinal detachment in vivo. Am. J. Pathol.158, 1271–1278 (2001). ArticleCASPubMedPubMed Central Google Scholar
Nussbaum, A.K. & Whitton, J.L. The contraction phase of virus-specific CD8+ T cells is unaffected by a pan-caspase inhibitor. J. Immunol.173, 6611–6618 (2004). ArticleCASPubMed Google Scholar
Fukuda, H. et al. Irradiation-induced progenitor cell death in the developing brain is resistant to erythropoietin treatment and caspase inhibition. Cell Death Differ.11, 1166–1178 (2004). ArticleCASPubMed Google Scholar
Higuchi, M. et al. Distinct mechanistic roles of calpain and caspase activation in neurodegeneration as revealed in mice overexpressing their specific inhibitors. J. Biol. Chem.280, 15229–15237 (2005). ArticleCASPubMed Google Scholar
Baines, C.P. et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature434, 658–662 (2005). ArticleCASPubMed Google Scholar
Nakagawa, T. et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature434, 652–658 (2005). ArticleCASPubMed Google Scholar
Strasser, A. The role of BH3-only proteins in the immune system. Nat. Rev. Immunol.5, 189–200 (2005). ArticleCASPubMed Google Scholar
Kuwana, T. et al. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell111, 331–342 (2002). ArticleCASPubMed Google Scholar
Kuwana, T. et al. BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol. Cell17, 525–535 (2005). ArticleCASPubMed Google Scholar
Chen, L. et al. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell17, 393–403 (2005). ArticleCASPubMed Google Scholar
Mattson, M.P. & Kroemer, G. Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends Mol. Med.9, 196–205 (2003). ArticleCASPubMed Google Scholar
Stavrovskaya, I.G. et al. Clinically approved heterocyclics act on a mitochondrial target and reduce stroke-induced pathology. J. Exp. Med.200, 211–222 (2004). ArticleCASPubMedPubMed Central Google Scholar
Fischer, S.F. et al. Chlamydia inhibit host cell apoptosis by degradation of proapoptotic BH3-only proteins. J. Exp. Med.200, 905–916 (2004). ArticleCASPubMedPubMed Central Google Scholar
Muntener, K., Zwicky, R., Csucs, G., Rohrer, J. & Baici, A. Exon skipping of cathepsin B: mitochondrial targeting of a lysosomal peptidase provokes cell death. J. Biol. Chem.279, 41012–41017 (2004). ArticlePubMedCAS Google Scholar
Guicciardi, M.E., Miyoshi, H., Bronk, S.F. & Gores, G.J. Cathepsin B knockout mice are resistant to tumor necrosis factor-alpha-mediated hepatocyte apoptosis and liver injury: implications for therapeutic applications. Am. J. Pathol.159, 2045–2054 (2001). ArticleCASPubMedPubMed Central Google Scholar
Canbay, A. et al. Cathepsin B inactivation attenuates hepatic injury and fibrosis during cholestasis. J. Clin. Invest.112, 152–159 (2003). ArticleCASPubMedPubMed Central Google Scholar
Liu, N. et al. Serine protease inhibitor 2A is a protective factor for memory T cell development. Nat. Immunol.5, 919–926 (2004). ArticleCASPubMed Google Scholar
Benchoua, A., Braudeau, J., Reis, A., Couriaud, C. & Onteniente, B. Activation of proinflammatory caspases by cathepsin B in focal cerebral ischemia. J. Cereb. Blood Flow Metab.24, 1272–1279 (2004). ArticleCASPubMed Google Scholar
Takano, J. et al. Calpain mediates excitotoxic DNA fragmentation via mitochondrial pathways in adult brains: Evidence from calpastatin-mutant mice. J. Biol. Chem.280, 16175–16184 (2005). ArticleCASPubMed Google Scholar
Saelens, X. et al. Toxic proteins released from mitochondria in cell death. Oncogene23, 2861–2874 (2004). ArticleCASPubMed Google Scholar
Cande, C. et al. AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis. Oncogene23, 1514–1521 (2004). ArticleCASPubMed Google Scholar
Parrish, J.Z. & Xue, D. Functional genomic analysis of apoptotic DNA degradation in C. elegans. Mol. Cell11, 987–996 (2003). ArticleCASPubMed Google Scholar
Joza, N. et al. Essential role of the mitochondrial apoptosis inducing factor in programmed cell death. Nature410, 549–554 (2001). ArticleCASPubMed Google Scholar
Cheung, E.C. et al. Apoptosis-inducing factor is a key factor in neuronal cell death propagated by BAX-dependent and BAX-independent mechanisms. J. Neurosci.25, 1324–1334 (2005). ArticleCASPubMedPubMed Central Google Scholar
Cilenti, L. et al. Regulation of HAX-1 anti-apoptotic protein by Omi/HtrA2 protease during cell death. J. Biol. Chem.279, 50295–50301 (2004). ArticleCASPubMed Google Scholar
Trencia, A. et al. Omi/HtrA2 promotes cell death by binding and degrading the anti-apoptotic protein ped/pea-15. J. Biol. Chem.279, 46566–46572 (2004). ArticleCASPubMed Google Scholar
Gupta, S. et al. The C-terminal tail of presenilin regulates Omi/HtrA2 protease activity. J. Biol. Chem.279, 45844–45854 (2004). ArticleCASPubMed Google Scholar
Cilenti, L. et al. Omi/HtrA2 protease mediates cisplatin-induced cell death in renal cells. Am. J. Physiol. Renal Physiol.288, F371–F379 (2005). ArticleCASPubMed Google Scholar
Liu, H.R. et al. Role of Omi/HtrA2 in apoptotic cell death after myocardial ischemia and reperfusion. Circulation111, 90–96 (2005). ArticleCASPubMed Google Scholar
Rustin, P. The use of antioxidants in Friedreich's ataxia treatment. Expert Opin. Investig. Drugs12, 569–575 (2003). ArticleCASPubMed Google Scholar
Liu, X., Van Vleet, T. & Schnellmann, R.G. The role of calpain in oncotic cell death. Annu. Rev. Pharmacol. Toxicol.44, 349–370 (2004). ArticleCASPubMed Google Scholar
Cregan, S.P. et al. Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. J. Cell Biol.158, 507–517 (2002). ArticleCASPubMedPubMed Central Google Scholar
Wang, H. et al. Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death. J. Neurosci.24, 10963–10973 (2004). ArticleCASPubMedPubMed Central Google Scholar
Matsumori, Y. et al. Hsp70 overexpression sequesters AIF and reduces neonatal hypoxic/ischemic brain injury. J. Cereb. Blood Flow Metab. 2 March 2005 (10.1038/sj.jcbfm.9600080).