Simmons, D.L., Botting, R.M. & Hla, T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol. Rev.56, 387–437 (2004). ArticleCAS Google Scholar
Hata, A.N. & Breyer, R.M. Pharmacology and signaling of prostaglandin receptors: multiple roles in inflammation and immune modulation. Pharmacol. Ther.103, 147–166 (2004). ArticleCAS Google Scholar
Minghetti, L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J. Neuropathol. Exp. Neurol.63, 901–910 (2004). ArticleCAS Google Scholar
Chen, C. & Bazan, N.G. Lipid signaling: sleep, synaptic plasticity, and neuroprotection. Prostaglandins Other Lipid Mediat.77, 65–76 (2005). ArticleCAS Google Scholar
Niwa, K., Araki, E., Morham, S.G., Ross, M.E. & Iadecola, C. Cyclooxygenase-2 contributes to functional hyperemia in whisker-barrel cortex. J. Neurosci.20, 763–770 (2000). ArticleCAS Google Scholar
FitzGerald, G.A. COX-2 and beyond: approaches to prostaglandin inhibition in human disease. Nat. Rev. Drug Discov.2, 879–890 (2003). ArticleCAS Google Scholar
Topol, E.J. Failing the public health—rofecoxib, Merck, and the FDA. N. Engl. J. Med.351, 1707–1709 (2004). ArticleCAS Google Scholar
Manabe, Y. et al. Prostanoids, not reactive oxygen species, mediate COX-2-dependent neurotoxicity. Ann. Neurol.55, 668–675 (2004). ArticleCAS Google Scholar
Carlson, N.G. Neuroprotection of cultured cortical neurons mediated by the cyclooxygenase-2 inhibitor APHS can be reversed by a prostanoid. J. Neurosci. Res.71, 79–88 (2003). ArticleCAS Google Scholar
Bilak, M. et al. PGE2 receptors rescue motor neurons in a model of amyotrophic lateral sclerosis. Ann. Neurol.56, 240–248 (2004). ArticleCAS Google Scholar
McCullough, L. et al. Neuroprotective function of the PGE2 EP2 receptor in cerebral ischemia. J. Neurosci.24, 257–268 (2004). ArticleCAS Google Scholar
Ahmad, A.S., Ahmad, M., de Brum-Fernandes, A.J. & Dore, S. Prostaglandin EP4 receptor agonist protects against acute neurotoxicity. Brain Res.1066, 71–77 (2005). ArticleCAS Google Scholar
Suganami, T. et al. Role of prostaglandin E receptor EP1 subtype in the development of renal injury in genetically hypertensive rats. Hypertension42, 1183–1190 (2003). ArticleCAS Google Scholar
Hallinan, E.A. et al. Aminoacetyl moiety as a potential surrogate for diacylhydrazine group of SC-51089, a potent PGE2 antagonist, and its analogs. J. Med. Chem.39, 609–613 (1996). ArticleCAS Google Scholar
Audoly, L.P. et al. Identification of specific EP receptors responsible for the hemodynamic effects of PGE2. Am. J. Physiol.277, H924–H930 (1999). CASPubMed Google Scholar
Nogawa, S., Zhang, F., Ross, M.E. & Iadecola, C. Cyclo-oxygenase-2 gene expression in neurons contributes to ischemic brain damage. J. Neurosci.17, 2746–2755 (1997). ArticleCAS Google Scholar
Caggiano, A.O. & Kraig, R.P. Prostaglandin E receptor subtypes in cultured rat microglia and their role in reducing lipopolysaccharide-induced interleukin-1β production. J. Neurochem.72, 565–575 (1999). ArticleCAS Google Scholar
Ladeby, R. et al. Microglial cell population dynamics in the injured adult central nervous system. Brain Res. Brain Res. Rev.48, 196–206 (2005). ArticleCAS Google Scholar
Iadecola, C. et al. Reduced susceptibility to ischemic brain injury and NMDA-mediated neurotoxicity in cyclooxygenase-2 deficient mice. Proc. Natl. Acad. Sci. USA98, 1294–1299 (2001). ArticleCAS Google Scholar
Sattler, R. & Tymianski, M. Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol. Neurobiol.24, 107–129 (2001). ArticleCAS Google Scholar
Funk, C.D. et al. Cloning and expression of a cDNA for the human prostaglandin E receptor EP1 subtype. J. Biol. Chem.268, 26767–26772 (1993). CASPubMed Google Scholar
Randall, R.D. & Thayer, S.A. Glutamate-induced calcium transient triggers delayed calcium overload and neurotoxicity in rat hippocampal neurons. J. Neurosci.12, 1882–1895 (1992). ArticleCAS Google Scholar
Tymianski, M., Charlton, M.P., Carlen, P.L. & Tator, C.H. Secondary Ca2+ overload indicates early neuronal injury which precedes staining with viability indicators. Brain Res.607, 319–323 (1993). ArticleCAS Google Scholar
Khodorov, B. Glutamate-induced deregulation of calcium homeostasis and mitochondrial dysfunction in mammalian central neurones. Prog. Biophys. Mol. Biol.86, 279–351 (2004). ArticleCAS Google Scholar
Bano, D. et al. Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell120, 275–285 (2005). ArticleCAS Google Scholar
Annunziato, L., Pignataro, G. & Di Renzo, G.F. Pharmacology of brain Na+/Ca2+ exchanger: from molecular biology to therapeutic perspectives. Pharmacol. Rev.56, 633–654 (2004). ArticleCAS Google Scholar
Khodorov, B. et al. On the origin of a sustained increase in cytosolic Ca2+ concentration after a toxic glutamate treatment of the nerve cell culture. FEBS Lett.324, 271–273 (1993). ArticleCAS Google Scholar
Kiedrowski, L. _N_-methyl-D-aspartate excitotoxicity: relationships among plasma membrane potential, Na+/Ca2+ exchange, mitochondrial Ca2+ overload, and cytoplasmic concentrations of Ca2+, H+, and K+. Mol. Pharmacol.56, 619–632 (1999). ArticleCAS Google Scholar
Cho, S. et al. The class B scavenger receptor CD36 mediates free radical production and tissue injury in cerebral ischemia. J. Neurosci.25, 2504–2512 (2005). ArticleCAS Google Scholar