Experimental febrile seizures are precipitated by a hyperthermia-induced respiratory alkalosis (original) (raw)

References

  1. Hauser, W.A. The prevalence and incidence of convulsive disorders in children. Epilepsia 35, Suppl 2, S1–S6 (1994).
    Article Google Scholar
  2. Tsuboi, T. Epidemiology of febrile and afebrile convulsions in children in Japan. Neurology 34, 175–181 (1984).
    Article CAS Google Scholar
  3. Sagar, H.J. & Oxbury, J.M. Hippocampal neuron loss in temporal lobe epilepsy: correlation with early childhood convulsions. Ann. Neurol. 22, 334–340 (1987).
    Article CAS Google Scholar
  4. French, J.A. et al. Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination. Ann. Neurol. 34, 774–780 (1993).
    Article CAS Google Scholar
  5. Holtzman, D., Obana, K. & Olson, J. Hyperthermia-induced seizures in the rat pup: a model for febrile convulsions in children. Science 213, 1034–1036 (1981).
    Article CAS Google Scholar
  6. Bender, R.A., Dube, C. & Baram, T.Z. Febrile seizures and mechanisms of epileptogenesis: insights from an animal model. Adv. Exp. Med. Biol. 548, 213–225 (2004).
    Article CAS Google Scholar
  7. Toth, Z., Yan, X.X., Haftoglou, S., Ribak, C.E. & Baram, T.Z. Seizure-induced neuronal injury: vulnerability to febrile seizures in an immature rat model. J. Neurosci. 18, 4285–4294 (1998).
    Article CAS Google Scholar
  8. Brewster, A. et al. Developmental febrile seizures modulate hippocampal gene expression of hyperpolarization-activated channels in an isoform- and cell-specific manner. J. Neurosci. 22, 4591–4599 (2002).
    Article CAS Google Scholar
  9. Chen, K., Baram, T.Z. & Soltesz, I. Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nat. Med. 5, 888–894 (1999).
    Article CAS Google Scholar
  10. Chen, K. et al. Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability. Nat. Med. 7, 331–337 (2001).
    Article CAS Google Scholar
  11. Dube, C. et al. Prolonged febrile seizures in the immature rat model enhance hippocampal excitability long term. Ann. Neurol. 47, 336–344 (2000).
    Article CAS Google Scholar
  12. Chen, K. et al. Long-term plasticity of endocannabinoid signaling induced by developmental febrile seizures. Neuron 39, 599–611 (2003).
    Article CAS Google Scholar
  13. Dube, C. et al. Temporal lobe epilepsy after experimental prolonged febrile seizures: prospective analysis. Brain 129, 911–922 (2006).
    Article Google Scholar
  14. O'Dempsey, T.J. et al. The effect of temperature reduction on respiratory rate in febrile illnesses. Arch. Dis. Child. 68, 492–495 (1993).
    Article CAS Google Scholar
  15. Taylor, J.A., Del Beccaro, M., Done, S. & Winters, W. Establishing clinically relevant standards for tachypnea in febrile children younger than 2 years. Arch. Pediatr. Adolesc. Med. 149, 283–287 (1995).
    Article CAS Google Scholar
  16. Gadomski, A.M., Permutt, T. & Stanton, B. Correcting respiratory rate for the presence of fever. J. Clin. Epidemiol. 47, 1043–1049 (1994).
    Article CAS Google Scholar
  17. Mariak, Z., White, M.D., Lewko, J., Lyson, T. & Piekarski, P. Direct cooling of the human brain by heat loss from the upper respiratory tract. J. Appl. Physiol. 87, 1609–1613 (1999).
    Article CAS Google Scholar
  18. Mortola, J.P. & Frappell, P.B. Ventilatory responses to changes in temperature in mammals and other vertebrates. Annu. Rev. Physiol. 62, 847–874 (2000).
    Article CAS Google Scholar
  19. Cameron, Y.L., Merazzi, D. & Mortola, J.P. Variability of the breathing pattern in newborn rats: effects of ambient temperature in normoxia or hypoxia. Pediatr. Res. 47, 813–818 (2000).
    Article CAS Google Scholar
  20. Kaila, K. & Ransom, B.R. pH and Brain Function 1–688 (Wiley-Liss, Inc., New York, 1998).
    Google Scholar
  21. Balestrino, M. & Somjen, G.G. Concentration of carbon dioxide, interstitial pH and synaptic transmission in hippocampal formation of the rat. J. Physiol. (Lond.) 396, 247–266 (1988).
    Article CAS Google Scholar
  22. Jarolimek, W., Misgeld, U. & Lux, H.D. Activity dependent alkaline and acid transients in guinea pig hippocampal slices. Brain Res. 505, 225–232 (1989).
    Article CAS Google Scholar
  23. Banke, T.G., Dravid, S.M. & Traynelis, S.F. Protons trap NR1/NR2B NMDA receptors in a nonconducting state. J. Neurosci. 25, 42–51 (2005).
    Article CAS Google Scholar
  24. Lee, J., Taira, T., Pihlaja, P., Ransom, B.R. & Kaila, K. Effects of CO2 on excitatory transmission apparently caused by changes in intracellular pH in the rat hippocampal slice. Brain Res. 706, 210–216 (1996).
    Article CAS Google Scholar
  25. Wirrell, E.C. et al. Will a critical level of hyperventilation-induced hypocapnia always induce an absence seizure? Epilepsia 37, 459–462 (1996).
    Article CAS Google Scholar
  26. Chesler, M. Regulation and modulation of pH in the brain. Physiol. Rev. 83, 1183–1221 (2003).
    Article CAS Google Scholar
  27. de Curtis, M., Manfridi, A. & Biella, G. Activity-dependent pH shifts and periodic recurrence of spontaneous interictal spikes in a model of focal epileptogenesis. J. Neurosci. 18, 7543–7551 (1998).
    Article CAS Google Scholar
  28. Xiong, Z.Q., Saggau, P. & Stringer, J.L. Activity-dependent intracellular acidification correlates with the duration of seizure activity. J. Neurosci. 20, 1290–1296 (2000).
    Article CAS Google Scholar
  29. Prole, D.L., Lima, P.A. & Marrion, N.V. Mechanisms underlying modulation of neuronal KCNQ2/KCNQ3 potassium channels by extracellular protons. J. Gen. Physiol. 122, 775–793 (2003).
    Article CAS Google Scholar
  30. Aram, J.A. & Lodge, D. Epileptiform activity induced by alkalosis in rat neocortical slices: block by antagonists of N-methyl-D-aspartate. Neurosci. Lett. 83, 345–350 (1987).
    Article CAS Google Scholar
  31. Baulac, S. et al. Fever, genes, and epilepsy. Lancet Neurol. 3, 421–430 (2004).
    Article CAS Google Scholar
  32. Mulley, J.C., Scheffer, I.E., Harkin, L.A., Berkovic, S.F. & Dibbens, L.M. Susceptibility genes for complex epilepsy. Hum. Mol. Genet. 14, Spec No. 2 R243–R249 (2005).
    Article CAS Google Scholar
  33. Haut, S.R., Veliskova, J. & Moshe, S.L. Susceptibility of immature and adult brains to seizure effects. Lancet Neurol. 3, 608–617 (2004).
    Article Google Scholar
  34. Baram, T.Z., Gerth, A. & Schultz, L. Febrile seizures: an appropriate-aged model suitable for long-term studies. Brain Res. Dev. Brain Res. 98, 265–270 (1997).
    Article CAS Google Scholar
  35. Voipio, J., Tallgren, P., Heinonen, E., Vanhatalo, S. & Kaila, K. Millivolt-scale DC shifts in the human scalp EEG: evidence for a nonneuronal generator. J. Neurophysiol. 89, 2208–2214 (2003).
    Article Google Scholar
  36. Richerson, G.B. Serotonergic neurons as carbon dioxide sensors that maintain pH homeostasis. Nat. Rev. Neurosci. 5, 449–461 (2004).
    Article CAS Google Scholar
  37. Putnam, R.W., Filosa, J.A. & Ritucci, N.A. Cellular mechanisms involved in CO2 and acid signaling in chemosensitive neurons. Am. J. Physiol. Cell Physiol. 287, C1493–C1526 (2004).
    Article CAS Google Scholar
  38. Saiki, C. & Mortola, J.P. Effect of CO2 on metabolic and ventilatory responses to ambient temperature in conscious adult and newborn rats. J. Physiol. (Lond.) 491, 261–269 (1996).
    Article CAS Google Scholar
  39. Putnam, R.W., Conrad, S.C., Gdovin, M.J., Erlichman, J.S. & Leiter, J.C. Neonatal maturation of the hypercapnic ventilatory response and central neural CO2 chemosensitivity. Respir. Physiol. Neurobiol. 149, 165–179 (2005).
    Article Google Scholar
  40. Berg, A.T. & Shinnar, S. Complex febrile seizures. Epilepsia 37, 126–133 (1996).
    Article CAS Google Scholar
  41. Singh, R., Scheffer, I.E., Crossland, K. & Berkovic, S.F. Generalized epilepsy with febrile seizures plus: a common childhood-onset genetic epilepsy syndrome. Ann. Neurol. 45, 75–81 (1999).
    Article CAS Google Scholar
  42. Mantegazza, M. et al. Identification of an Nav1.1 sodium channel (SCN1A) loss-of-function mutation associated with familial simple febrile seizures. Proc. Natl. Acad. Sci. USA 102, 18177–18182 (2005).
    Article CAS Google Scholar
  43. Kang, J.Q., Shen, W. & Macdonald, R.L. Why does fever trigger febrile seizures? GABAA receptor gamma2 subunit mutations associated with idiopathic generalized epilepsies have temperature-dependent trafficking deficiencies. J. Neurosci. 26, 2590–2597 (2006).
    Article CAS Google Scholar
  44. Lahtinen, H. et al. Postnatal development of rat hippocampal gamma rhythm in vivo. J. Neurophysiol. 88, 1469–1474 (2002).
    Article Google Scholar
  45. Yi, D.K. & Barr, G.A. The suppression of formalin-induced fos expression by different anesthetic agents in the infant rat. Dev. Psychobiol. 29, 497–506 (1996).
    Article CAS Google Scholar
  46. Vanhatalo, S., Voipio, J. & Kaila, K. Full-band EEG (fbEEG): a new standard for clinical electroencephalography. Clin. EEG Neurosci. 36, 311–317 (2005).
    Article Google Scholar
  47. Voipio, J. & Kaila, K. Interstitial PCO2 and pH in rat hippocampal slices measured by means of a novel fast CO2/H+-sensitive microelectrode based on a PVC-gelled membrane. Pflugers Arch. 423, 193–201 (1993).
    Article CAS Google Scholar
  48. Vaughan-Jones, R.D. & Kaila, K. The sensitivity of liquid sensor, ion-selective microelectrodes to changes in temperature and solution level. Pflugers Arch. 406, 641–644 (1986).
    Article CAS Google Scholar
  49. Schmitz, D., Mellor, J., Breustedt, J. & Nicoll, R.A. Presynaptic kainate receptors impart an associative property to hippocampal mossy fiber long-term potentiation. Nat. Neurosci. 6, 1058–1063 (2003).
    Article CAS Google Scholar
  50. Hajos, N. et al. Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur. J. Neurosci. 12, 3239–3249 (2000).
    Article CAS Google Scholar

Download references