Experimental febrile seizures are precipitated by a hyperthermia-induced respiratory alkalosis (original) (raw)
References
Hauser, W.A. The prevalence and incidence of convulsive disorders in children. Epilepsia35, Suppl 2, S1–S6 (1994). Article Google Scholar
Tsuboi, T. Epidemiology of febrile and afebrile convulsions in children in Japan. Neurology34, 175–181 (1984). ArticleCAS Google Scholar
Sagar, H.J. & Oxbury, J.M. Hippocampal neuron loss in temporal lobe epilepsy: correlation with early childhood convulsions. Ann. Neurol.22, 334–340 (1987). ArticleCAS Google Scholar
French, J.A. et al. Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination. Ann. Neurol.34, 774–780 (1993). ArticleCAS Google Scholar
Holtzman, D., Obana, K. & Olson, J. Hyperthermia-induced seizures in the rat pup: a model for febrile convulsions in children. Science213, 1034–1036 (1981). ArticleCAS Google Scholar
Bender, R.A., Dube, C. & Baram, T.Z. Febrile seizures and mechanisms of epileptogenesis: insights from an animal model. Adv. Exp. Med. Biol.548, 213–225 (2004). ArticleCAS Google Scholar
Toth, Z., Yan, X.X., Haftoglou, S., Ribak, C.E. & Baram, T.Z. Seizure-induced neuronal injury: vulnerability to febrile seizures in an immature rat model. J. Neurosci.18, 4285–4294 (1998). ArticleCAS Google Scholar
Brewster, A. et al. Developmental febrile seizures modulate hippocampal gene expression of hyperpolarization-activated channels in an isoform- and cell-specific manner. J. Neurosci.22, 4591–4599 (2002). ArticleCAS Google Scholar
Chen, K., Baram, T.Z. & Soltesz, I. Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nat. Med.5, 888–894 (1999). ArticleCAS Google Scholar
Chen, K. et al. Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability. Nat. Med.7, 331–337 (2001). ArticleCAS Google Scholar
Dube, C. et al. Prolonged febrile seizures in the immature rat model enhance hippocampal excitability long term. Ann. Neurol.47, 336–344 (2000). ArticleCAS Google Scholar
Chen, K. et al. Long-term plasticity of endocannabinoid signaling induced by developmental febrile seizures. Neuron39, 599–611 (2003). ArticleCAS Google Scholar
Dube, C. et al. Temporal lobe epilepsy after experimental prolonged febrile seizures: prospective analysis. Brain129, 911–922 (2006). Article Google Scholar
O'Dempsey, T.J. et al. The effect of temperature reduction on respiratory rate in febrile illnesses. Arch. Dis. Child.68, 492–495 (1993). ArticleCAS Google Scholar
Taylor, J.A., Del Beccaro, M., Done, S. & Winters, W. Establishing clinically relevant standards for tachypnea in febrile children younger than 2 years. Arch. Pediatr. Adolesc. Med.149, 283–287 (1995). ArticleCAS Google Scholar
Gadomski, A.M., Permutt, T. & Stanton, B. Correcting respiratory rate for the presence of fever. J. Clin. Epidemiol.47, 1043–1049 (1994). ArticleCAS Google Scholar
Mariak, Z., White, M.D., Lewko, J., Lyson, T. & Piekarski, P. Direct cooling of the human brain by heat loss from the upper respiratory tract. J. Appl. Physiol.87, 1609–1613 (1999). ArticleCAS Google Scholar
Mortola, J.P. & Frappell, P.B. Ventilatory responses to changes in temperature in mammals and other vertebrates. Annu. Rev. Physiol.62, 847–874 (2000). ArticleCAS Google Scholar
Cameron, Y.L., Merazzi, D. & Mortola, J.P. Variability of the breathing pattern in newborn rats: effects of ambient temperature in normoxia or hypoxia. Pediatr. Res.47, 813–818 (2000). ArticleCAS Google Scholar
Kaila, K. & Ransom, B.R. pH and Brain Function 1–688 (Wiley-Liss, Inc., New York, 1998). Google Scholar
Balestrino, M. & Somjen, G.G. Concentration of carbon dioxide, interstitial pH and synaptic transmission in hippocampal formation of the rat. J. Physiol. (Lond.)396, 247–266 (1988). ArticleCAS Google Scholar
Jarolimek, W., Misgeld, U. & Lux, H.D. Activity dependent alkaline and acid transients in guinea pig hippocampal slices. Brain Res.505, 225–232 (1989). ArticleCAS Google Scholar
Banke, T.G., Dravid, S.M. & Traynelis, S.F. Protons trap NR1/NR2B NMDA receptors in a nonconducting state. J. Neurosci.25, 42–51 (2005). ArticleCAS Google Scholar
Lee, J., Taira, T., Pihlaja, P., Ransom, B.R. & Kaila, K. Effects of CO2 on excitatory transmission apparently caused by changes in intracellular pH in the rat hippocampal slice. Brain Res.706, 210–216 (1996). ArticleCAS Google Scholar
Wirrell, E.C. et al. Will a critical level of hyperventilation-induced hypocapnia always induce an absence seizure? Epilepsia37, 459–462 (1996). ArticleCAS Google Scholar
Chesler, M. Regulation and modulation of pH in the brain. Physiol. Rev.83, 1183–1221 (2003). ArticleCAS Google Scholar
de Curtis, M., Manfridi, A. & Biella, G. Activity-dependent pH shifts and periodic recurrence of spontaneous interictal spikes in a model of focal epileptogenesis. J. Neurosci.18, 7543–7551 (1998). ArticleCAS Google Scholar
Xiong, Z.Q., Saggau, P. & Stringer, J.L. Activity-dependent intracellular acidification correlates with the duration of seizure activity. J. Neurosci.20, 1290–1296 (2000). ArticleCAS Google Scholar
Prole, D.L., Lima, P.A. & Marrion, N.V. Mechanisms underlying modulation of neuronal KCNQ2/KCNQ3 potassium channels by extracellular protons. J. Gen. Physiol.122, 775–793 (2003). ArticleCAS Google Scholar
Aram, J.A. & Lodge, D. Epileptiform activity induced by alkalosis in rat neocortical slices: block by antagonists of N-methyl-D-aspartate. Neurosci. Lett.83, 345–350 (1987). ArticleCAS Google Scholar
Baulac, S. et al. Fever, genes, and epilepsy. Lancet Neurol.3, 421–430 (2004). ArticleCAS Google Scholar
Haut, S.R., Veliskova, J. & Moshe, S.L. Susceptibility of immature and adult brains to seizure effects. Lancet Neurol.3, 608–617 (2004). Article Google Scholar
Baram, T.Z., Gerth, A. & Schultz, L. Febrile seizures: an appropriate-aged model suitable for long-term studies. Brain Res. Dev. Brain Res.98, 265–270 (1997). ArticleCAS Google Scholar
Voipio, J., Tallgren, P., Heinonen, E., Vanhatalo, S. & Kaila, K. Millivolt-scale DC shifts in the human scalp EEG: evidence for a nonneuronal generator. J. Neurophysiol.89, 2208–2214 (2003). Article Google Scholar
Richerson, G.B. Serotonergic neurons as carbon dioxide sensors that maintain pH homeostasis. Nat. Rev. Neurosci.5, 449–461 (2004). ArticleCAS Google Scholar
Putnam, R.W., Filosa, J.A. & Ritucci, N.A. Cellular mechanisms involved in CO2 and acid signaling in chemosensitive neurons. Am. J. Physiol. Cell Physiol.287, C1493–C1526 (2004). ArticleCAS Google Scholar
Saiki, C. & Mortola, J.P. Effect of CO2 on metabolic and ventilatory responses to ambient temperature in conscious adult and newborn rats. J. Physiol. (Lond.)491, 261–269 (1996). ArticleCAS Google Scholar
Putnam, R.W., Conrad, S.C., Gdovin, M.J., Erlichman, J.S. & Leiter, J.C. Neonatal maturation of the hypercapnic ventilatory response and central neural CO2 chemosensitivity. Respir. Physiol. Neurobiol.149, 165–179 (2005). Article Google Scholar
Berg, A.T. & Shinnar, S. Complex febrile seizures. Epilepsia37, 126–133 (1996). ArticleCAS Google Scholar
Singh, R., Scheffer, I.E., Crossland, K. & Berkovic, S.F. Generalized epilepsy with febrile seizures plus: a common childhood-onset genetic epilepsy syndrome. Ann. Neurol.45, 75–81 (1999). ArticleCAS Google Scholar
Mantegazza, M. et al. Identification of an Nav1.1 sodium channel (SCN1A) loss-of-function mutation associated with familial simple febrile seizures. Proc. Natl. Acad. Sci. USA102, 18177–18182 (2005). ArticleCAS Google Scholar
Kang, J.Q., Shen, W. & Macdonald, R.L. Why does fever trigger febrile seizures? GABAA receptor gamma2 subunit mutations associated with idiopathic generalized epilepsies have temperature-dependent trafficking deficiencies. J. Neurosci.26, 2590–2597 (2006). ArticleCAS Google Scholar
Lahtinen, H. et al. Postnatal development of rat hippocampal gamma rhythm in vivo. J. Neurophysiol.88, 1469–1474 (2002). Article Google Scholar
Yi, D.K. & Barr, G.A. The suppression of formalin-induced fos expression by different anesthetic agents in the infant rat. Dev. Psychobiol.29, 497–506 (1996). ArticleCAS Google Scholar
Vanhatalo, S., Voipio, J. & Kaila, K. Full-band EEG (fbEEG): a new standard for clinical electroencephalography. Clin. EEG Neurosci.36, 311–317 (2005). Article Google Scholar
Voipio, J. & Kaila, K. Interstitial PCO2 and pH in rat hippocampal slices measured by means of a novel fast CO2/H+-sensitive microelectrode based on a PVC-gelled membrane. Pflugers Arch.423, 193–201 (1993). ArticleCAS Google Scholar
Vaughan-Jones, R.D. & Kaila, K. The sensitivity of liquid sensor, ion-selective microelectrodes to changes in temperature and solution level. Pflugers Arch.406, 641–644 (1986). ArticleCAS Google Scholar
Schmitz, D., Mellor, J., Breustedt, J. & Nicoll, R.A. Presynaptic kainate receptors impart an associative property to hippocampal mossy fiber long-term potentiation. Nat. Neurosci.6, 1058–1063 (2003). ArticleCAS Google Scholar
Hajos, N. et al. Cannabinoids inhibit hippocampal GABAergic transmission and network oscillations. Eur. J. Neurosci.12, 3239–3249 (2000). ArticleCAS Google Scholar