Protein carbamylation links inflammation, smoking, uremia and atherogenesis (original) (raw)
References
Erill, S., Calvo, R. & Carlos, R. Plasma protein carbamylation and decreased acidic drug protein binding in uremia. Clin. Pharmacol. Ther.27, 612–618 (1980). ArticleCAS Google Scholar
Fluckiger, R., Harmon, W., Meier, W., Loo, S. & Gabbay, K.H. Hemoglobin carbamylation in uremia. N. Engl. J. Med.304, 823–827 (1981). ArticleCAS Google Scholar
Hörkkö, S., Huttunen, K., Kervinen, K. & Kesaniemi, Y.A. Decreased clearance of uraemic and mildly carbamylated low-density lipoprotein. Eur. J. Clin. Invest.24, 105–113 (1994). Article Google Scholar
Kraus, L.M. & Kraus, A.P., Jr. Carbamoylation of amino acids and proteins in uremia. Kidney Int. Suppl. 78, S102–S107 (2001). ArticleCAS Google Scholar
Stark, G.R., Stein, W.H. & Moore, S. Reactions of the cyanante present in aqueous urea with amino acids and proteins. J. Biol. Chem.235, 3177–3181 (1960). CAS Google Scholar
Bobb, D. & Hofstee, B.H. Gel isoelectric focusing for following the successive carbamylations of amino groups in chymotrypsinogen A. Anal. Biochem.40, 209–217 (1971). ArticleCAS Google Scholar
Stark, G.R. Reactions of cyanate with functional groups of proteins. II. Formation, decomposition, and properties of _N_-carbamylimidazole. Biochemistry4, 588–595 (1965). ArticleCAS Google Scholar
Stim, J. et al. Factors determining hemoglobin carbamylation in renal failure. Kidney Int.48, 1605–1610 (1995). ArticleCAS Google Scholar
Lhotta, K., Schlogl, A., Uring-Lambert, B., Kronenberg, F. & Konig, P. Complement C4 phenotypes in patients with end-stage renal disease. Nephron72, 442–446 (1996). ArticleCAS Google Scholar
Mun, K.C. & Golper, T.A. Impaired biological activity of erythropoietin by cyanate carbamylation. Blood Purif.18, 13–17 (2000). ArticleCAS Google Scholar
Ok, E., Basnakian, A.G., Apostolov, E.O., Barri, Y.M. & Shah, S.V. Carbamylated low-density lipoprotein induces death of endothelial cells: a link to atherosclerosis in patients with kidney disease. Kidney Int.68, 173–178 (2005). ArticleCAS Google Scholar
Nicholls, S.J. & Hazen, S.L. Myeloperoxidase and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol.25, 1102–1111 (2005). ArticleCAS Google Scholar
Hazen, S.L. & Heinecke, J.W. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J. Clin. Invest.99, 2075–2081 (1997). ArticleCAS Google Scholar
Podrez, E.A., Schmitt, D., Hoff, H.F. & Hazen, S.L. Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro. J. Clin. Invest.103, 1547–1560 (1999). ArticleCAS Google Scholar
Zhang, R. et al. Association between myeloperoxidase levels and risk of coronary artery disease. J. Am. Med. Assoc.286, 2136–2142 (2001). ArticleCAS Google Scholar
Brennan, M.L. et al. Prognostic value of myeloperoxidase in patients with chest pain. N. Engl. J. Med.349, 1595–1604 (2003). ArticleCAS Google Scholar
Asselbergs, F.W., Reynolds, W.F., Cohen-Tervaert, J.W., Jessurun, G.A. & Tio, R.A. Myeloperoxidase polymorphism related to cardiovascular events in coronary artery disease. Am. J. Med.116, 429–430 (2004). ArticleCAS Google Scholar
McMillen, T.S., Heinecke, J.W. & LeBoeuf, R.C. Expression of human myeloperoxidase by macrophages promotes atherosclerosis in mice. Circulation111, 2798–2804 (2005). ArticleCAS Google Scholar
Castellani, L.W., Chang, J.J., Wang, X., Lusis, A.J. & Reynolds, W.F. Transgenic mice express human MPO -463G/A alleles at atherosclerotic lesions, developing hyperlipidemia and obesity in -463G males. J. Lipid Res.47, 1366–1377 (2006). ArticleCAS Google Scholar
Abu-Soud, H.M. & Hazen, S.L. Nitric oxide is a physiological substrate for mammalian peroxidases. J. Biol. Chem.275, 37524–37532 (2000). ArticleCAS Google Scholar
Eiserich, J.P. et al. Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science296, 2391–2394 (2002). ArticleCAS Google Scholar
Baldus, S. et al. Myeloperoxidase enhances nitric oxide catabolism during myocardial ischemia and reperfusion. Free Radic. Biol. Med.37, 902–911 (2004). ArticleCAS Google Scholar
Vita, J.A. et al. Serum myeloperoxidase levels independently predict endothelial dysfunction in humans. Circulation110, 1134–1139 (2004). ArticleCAS Google Scholar
Zheng, L. et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J. Clin. Invest.114, 529–541 (2004). ArticleCAS Google Scholar
Shao, B. et al. Tyrosine 192 in apolipoprotein A-I is the major site of nitration and chlorination by myeloperoxidase, but only chlorination markedly impairs ABCA1-dependent cholesterol transport. J. Biol. Chem.280, 5983–5993 (2005). ArticleCAS Google Scholar
Zheng, L. et al. Localization of nitration and chlorination sites on apolipoprotein A-I catalyzed by myeloperoxidase in human atheroma and associated oxidative impairment in ABCA1-dependent cholesterol efflux from macrophages. J. Biol. Chem.280, 38–47 (2005). ArticleCAS Google Scholar
Wu, Z. et al. The refined structure of nascent HDL reveals a key functional domain for particle maturation and dysfunction. Nat. Struct. Mol. Biol.14, 861–868 (2007). ArticleCAS Google Scholar
Wever, R., Kast, W.M., Kasinoedin, J.H. & Boelens, R. The peroxidation of thiocyanate catalysed by myeloperoxidase and lactoperoxidase. Biochim. Biophys. Acta709, 212–219 (1982). ArticleCAS Google Scholar
Olea, F. & Parras, P. Determination of serum levels of dietary thiocyanate. J. Anal. Toxicol.16, 258–260 (1992). ArticleCAS Google Scholar
Husgafvel-Pursiainen, K., Sorsa, M., Engstrom, K. & Einisto, P. Passive smoking at work: biochemical and biological measures of exposure to environmental tobacco smoke. Int. Arch. Occup. Environ. Health59, 337–345 (1987). ArticleCAS Google Scholar
van Dalen, C.J., Whitehouse, M.W., Winterbourn, C.C. & Kettle, A.J. Thiocyanate and chloride as competing substrates for myeloperoxidase. Biochem. J.327, 487–492 (1997). ArticleCAS Google Scholar
Kersten, H.W., Moorer, W.R. & Wever, R. Thiocyanate as a cofactor in myeloperoxidase activity against Streptococcus mutans. J. Dent. Res.60, 831–837 (1981). ArticleCAS Google Scholar
Arlandson, M. et al. Eosinophil peroxidase oxidation of thiocyanate. Characterization of major reaction products and a potential sulfhydryl-targeted cytotoxicity system. J. Biol. Chem.276, 215–224 (2001). ArticleCAS Google Scholar
Stark, G.R. On the reversible reaction of cyanate with sulfhydryl groups and the determination Of NH2-terminal cysteine and cystine in proteins. J. Biol. Chem.239, 1411–1414 (1964). CASPubMed Google Scholar
Stark, G.R. & Smyth, D.G. The use of cyanate for the determination of NH2-terminal residues in proteins. J. Biol. Chem.238, 214–226 (1963). CASPubMed Google Scholar
Brennan, M.L. et al. A tale of two controversies: defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species. J. Biol. Chem.277, 17415–17427 (2002). ArticleCAS Google Scholar
Zhang, R. et al. Myeloperoxidase functions as a major enzymatic catalyst for initiation of lipid peroxidation at sites of inflammation. J. Biol. Chem.277, 46116–46122 (2002). ArticleCAS Google Scholar
Kumar, A.P., Piedrafita, F.J. & Reynolds, W.F. Peroxisome proliferator-activated receptor gamma ligands regulate myeloperoxidase expression in macrophages by an estrogen-dependent mechanism involving the -463GA promoter polymorphism. J. Biol. Chem.279, 8300–8315 (2004). ArticleCAS Google Scholar
Thukkani, A.K. et al. Identification of alpha-chloro fatty aldehydes and unsaturated lysophosphatidylcholine molecular species in human atherosclerotic lesions. Circulation108, 3128–3133 (2003). ArticleCAS Google Scholar
Hörkkö, S., Savolainen, M.J., Kervinen, K. & Kesaniemi, Y.A. Carbamylation-induced alterations in low-density lipoprotein metabolism. Kidney Int.41, 1175–1181 (1992). Article Google Scholar
Sugiyama, S. et al. Hypochlorous acid, a macrophage product, induces endothelial apoptosis and tissue factor expression: involvement of myeloperoxidase-mediated oxidant in plaque erosion and thrombogenesis. Arterioscler. Thromb. Vasc. Biol.24, 1309–1314 (2004). ArticleCAS Google Scholar
Yang, J., Cheng, Y., Ji, R. & Zhang, C. A novel model of inflammatory neointima formation reveals a potential role of myeloperoxidase in neointimal hyperplasia. Am. J. Physiol. Heart Circ. Physiol.291, H3087–H3093 (2006). ArticleCAS Google Scholar
Hill, P., Haley, N.J. & Wynder, E.L. Cigarette smoking: carboxyhemoglobin, plasma nicotine, cotinine and thiocyanate vs self-reported smoking data and cardiovascular disease. J. Chronic Dis.36, 439–449 (1983). ArticleCAS Google Scholar
Markwell, M.A., Haas, S.M., Bieber, L.L. & Tolbert, N.E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem.87, 206–210 (1978). ArticleCAS Google Scholar
Podrez, E.A. et al. Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species. J. Clin. Invest.105, 1095–1108 (2000). ArticleCAS Google Scholar