Protein carbamylation links inflammation, smoking, uremia and atherogenesis (original) (raw)

References

  1. Erill, S., Calvo, R. & Carlos, R. Plasma protein carbamylation and decreased acidic drug protein binding in uremia. Clin. Pharmacol. Ther. 27, 612–618 (1980).
    Article CAS Google Scholar
  2. Fluckiger, R., Harmon, W., Meier, W., Loo, S. & Gabbay, K.H. Hemoglobin carbamylation in uremia. N. Engl. J. Med. 304, 823–827 (1981).
    Article CAS Google Scholar
  3. Hörkkö, S., Huttunen, K., Kervinen, K. & Kesaniemi, Y.A. Decreased clearance of uraemic and mildly carbamylated low-density lipoprotein. Eur. J. Clin. Invest. 24, 105–113 (1994).
    Article Google Scholar
  4. Kraus, L.M. & Kraus, A.P., Jr. Carbamoylation of amino acids and proteins in uremia. Kidney Int. Suppl. 78, S102–S107 (2001).
    Article CAS Google Scholar
  5. Stark, G.R., Stein, W.H. & Moore, S. Reactions of the cyanante present in aqueous urea with amino acids and proteins. J. Biol. Chem. 235, 3177–3181 (1960).
    CAS Google Scholar
  6. Bobb, D. & Hofstee, B.H. Gel isoelectric focusing for following the successive carbamylations of amino groups in chymotrypsinogen A. Anal. Biochem. 40, 209–217 (1971).
    Article CAS Google Scholar
  7. Stark, G.R. Reactions of cyanate with functional groups of proteins. II. Formation, decomposition, and properties of _N_-carbamylimidazole. Biochemistry 4, 588–595 (1965).
    Article CAS Google Scholar
  8. Stim, J. et al. Factors determining hemoglobin carbamylation in renal failure. Kidney Int. 48, 1605–1610 (1995).
    Article CAS Google Scholar
  9. Lhotta, K., Schlogl, A., Uring-Lambert, B., Kronenberg, F. & Konig, P. Complement C4 phenotypes in patients with end-stage renal disease. Nephron 72, 442–446 (1996).
    Article CAS Google Scholar
  10. Mun, K.C. & Golper, T.A. Impaired biological activity of erythropoietin by cyanate carbamylation. Blood Purif. 18, 13–17 (2000).
    Article CAS Google Scholar
  11. Ok, E., Basnakian, A.G., Apostolov, E.O., Barri, Y.M. & Shah, S.V. Carbamylated low-density lipoprotein induces death of endothelial cells: a link to atherosclerosis in patients with kidney disease. Kidney Int. 68, 173–178 (2005).
    Article CAS Google Scholar
  12. Nicholls, S.J. & Hazen, S.L. Myeloperoxidase and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 25, 1102–1111 (2005).
    Article CAS Google Scholar
  13. Hazen, S.L. & Heinecke, J.W. 3-Chlorotyrosine, a specific marker of myeloperoxidase-catalyzed oxidation, is markedly elevated in low density lipoprotein isolated from human atherosclerotic intima. J. Clin. Invest. 99, 2075–2081 (1997).
    Article CAS Google Scholar
  14. Podrez, E.A., Schmitt, D., Hoff, H.F. & Hazen, S.L. Myeloperoxidase-generated reactive nitrogen species convert LDL into an atherogenic form in vitro. J. Clin. Invest. 103, 1547–1560 (1999).
    Article CAS Google Scholar
  15. Zhang, R. et al. Association between myeloperoxidase levels and risk of coronary artery disease. J. Am. Med. Assoc. 286, 2136–2142 (2001).
    Article CAS Google Scholar
  16. Brennan, M.L. et al. Prognostic value of myeloperoxidase in patients with chest pain. N. Engl. J. Med. 349, 1595–1604 (2003).
    Article CAS Google Scholar
  17. Asselbergs, F.W., Reynolds, W.F., Cohen-Tervaert, J.W., Jessurun, G.A. & Tio, R.A. Myeloperoxidase polymorphism related to cardiovascular events in coronary artery disease. Am. J. Med. 116, 429–430 (2004).
    Article CAS Google Scholar
  18. McMillen, T.S., Heinecke, J.W. & LeBoeuf, R.C. Expression of human myeloperoxidase by macrophages promotes atherosclerosis in mice. Circulation 111, 2798–2804 (2005).
    Article CAS Google Scholar
  19. Castellani, L.W., Chang, J.J., Wang, X., Lusis, A.J. & Reynolds, W.F. Transgenic mice express human MPO -463G/A alleles at atherosclerotic lesions, developing hyperlipidemia and obesity in -463G males. J. Lipid Res. 47, 1366–1377 (2006).
    Article CAS Google Scholar
  20. Abu-Soud, H.M. & Hazen, S.L. Nitric oxide is a physiological substrate for mammalian peroxidases. J. Biol. Chem. 275, 37524–37532 (2000).
    Article CAS Google Scholar
  21. Eiserich, J.P. et al. Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science 296, 2391–2394 (2002).
    Article CAS Google Scholar
  22. Baldus, S. et al. Myeloperoxidase enhances nitric oxide catabolism during myocardial ischemia and reperfusion. Free Radic. Biol. Med. 37, 902–911 (2004).
    Article CAS Google Scholar
  23. Vita, J.A. et al. Serum myeloperoxidase levels independently predict endothelial dysfunction in humans. Circulation 110, 1134–1139 (2004).
    Article CAS Google Scholar
  24. Zheng, L. et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J. Clin. Invest. 114, 529–541 (2004).
    Article CAS Google Scholar
  25. Shao, B. et al. Tyrosine 192 in apolipoprotein A-I is the major site of nitration and chlorination by myeloperoxidase, but only chlorination markedly impairs ABCA1-dependent cholesterol transport. J. Biol. Chem. 280, 5983–5993 (2005).
    Article CAS Google Scholar
  26. Zheng, L. et al. Localization of nitration and chlorination sites on apolipoprotein A-I catalyzed by myeloperoxidase in human atheroma and associated oxidative impairment in ABCA1-dependent cholesterol efflux from macrophages. J. Biol. Chem. 280, 38–47 (2005).
    Article CAS Google Scholar
  27. Wu, Z. et al. The refined structure of nascent HDL reveals a key functional domain for particle maturation and dysfunction. Nat. Struct. Mol. Biol. 14, 861–868 (2007).
    Article CAS Google Scholar
  28. Wever, R., Kast, W.M., Kasinoedin, J.H. & Boelens, R. The peroxidation of thiocyanate catalysed by myeloperoxidase and lactoperoxidase. Biochim. Biophys. Acta 709, 212–219 (1982).
    Article CAS Google Scholar
  29. Olea, F. & Parras, P. Determination of serum levels of dietary thiocyanate. J. Anal. Toxicol. 16, 258–260 (1992).
    Article CAS Google Scholar
  30. Husgafvel-Pursiainen, K., Sorsa, M., Engstrom, K. & Einisto, P. Passive smoking at work: biochemical and biological measures of exposure to environmental tobacco smoke. Int. Arch. Occup. Environ. Health 59, 337–345 (1987).
    Article CAS Google Scholar
  31. van Dalen, C.J., Whitehouse, M.W., Winterbourn, C.C. & Kettle, A.J. Thiocyanate and chloride as competing substrates for myeloperoxidase. Biochem. J. 327, 487–492 (1997).
    Article CAS Google Scholar
  32. Kersten, H.W., Moorer, W.R. & Wever, R. Thiocyanate as a cofactor in myeloperoxidase activity against Streptococcus mutans. J. Dent. Res. 60, 831–837 (1981).
    Article CAS Google Scholar
  33. Arlandson, M. et al. Eosinophil peroxidase oxidation of thiocyanate. Characterization of major reaction products and a potential sulfhydryl-targeted cytotoxicity system. J. Biol. Chem. 276, 215–224 (2001).
    Article CAS Google Scholar
  34. Stark, G.R. On the reversible reaction of cyanate with sulfhydryl groups and the determination Of NH2-terminal cysteine and cystine in proteins. J. Biol. Chem. 239, 1411–1414 (1964).
    CAS PubMed Google Scholar
  35. Stark, G.R. & Smyth, D.G. The use of cyanate for the determination of NH2-terminal residues in proteins. J. Biol. Chem. 238, 214–226 (1963).
    CAS PubMed Google Scholar
  36. Brennan, M.L. et al. A tale of two controversies: defining both the role of peroxidases in nitrotyrosine formation in vivo using eosinophil peroxidase and myeloperoxidase-deficient mice, and the nature of peroxidase-generated reactive nitrogen species. J. Biol. Chem. 277, 17415–17427 (2002).
    Article CAS Google Scholar
  37. Zhang, R. et al. Myeloperoxidase functions as a major enzymatic catalyst for initiation of lipid peroxidation at sites of inflammation. J. Biol. Chem. 277, 46116–46122 (2002).
    Article CAS Google Scholar
  38. Kumar, A.P., Piedrafita, F.J. & Reynolds, W.F. Peroxisome proliferator-activated receptor gamma ligands regulate myeloperoxidase expression in macrophages by an estrogen-dependent mechanism involving the -463GA promoter polymorphism. J. Biol. Chem. 279, 8300–8315 (2004).
    Article CAS Google Scholar
  39. Thukkani, A.K. et al. Identification of alpha-chloro fatty aldehydes and unsaturated lysophosphatidylcholine molecular species in human atherosclerotic lesions. Circulation 108, 3128–3133 (2003).
    Article CAS Google Scholar
  40. Hörkkö, S., Savolainen, M.J., Kervinen, K. & Kesaniemi, Y.A. Carbamylation-induced alterations in low-density lipoprotein metabolism. Kidney Int. 41, 1175–1181 (1992).
    Article Google Scholar
  41. Sugiyama, S. et al. Hypochlorous acid, a macrophage product, induces endothelial apoptosis and tissue factor expression: involvement of myeloperoxidase-mediated oxidant in plaque erosion and thrombogenesis. Arterioscler. Thromb. Vasc. Biol. 24, 1309–1314 (2004).
    Article CAS Google Scholar
  42. Yang, J., Cheng, Y., Ji, R. & Zhang, C. A novel model of inflammatory neointima formation reveals a potential role of myeloperoxidase in neointimal hyperplasia. Am. J. Physiol. Heart Circ. Physiol. 291, H3087–H3093 (2006).
    Article CAS Google Scholar
  43. Hill, P., Haley, N.J. & Wynder, E.L. Cigarette smoking: carboxyhemoglobin, plasma nicotine, cotinine and thiocyanate vs self-reported smoking data and cardiovascular disease. J. Chronic Dis. 36, 439–449 (1983).
    Article CAS Google Scholar
  44. Markwell, M.A., Haas, S.M., Bieber, L.L. & Tolbert, N.E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem. 87, 206–210 (1978).
    Article CAS Google Scholar
  45. Podrez, E.A. et al. Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species. J. Clin. Invest. 105, 1095–1108 (2000).
    Article CAS Google Scholar
  46. Anderson, K.M., Odell, P.M., Wilson, P.W. & Kannel, W.B. Cardiovascular disease risk profiles. Am. Heart J. 121, 293–298 (1991).
    Article CAS Google Scholar
  47. Stoves, J., Lindley, E.J., Barnfield, M.C., Burniston, M.T. & Newstead, C.G. MDRD equation estimates of glomerular filtration rate in potential living kidney donors and renal transplant recipients with impaired graft function. Nephrol. Dial. Transplant. 17, 2036–2037 (2002).
    Article Google Scholar

Download references