Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation (original) (raw)
Alitalo, K., Tammela, T. & Petrova, T.V. Lymphangiogenesis in development and human disease. Nature438, 946–953 (2005). ArticleCAS Google Scholar
Mortimer, P.S. et al. The prevalence of arm oedema following treatment for breast cancer. Quart. J. Med.89, 377–780 (1996). Article Google Scholar
Clark, B., Sitzia, J. & Harlow, W. Incidence and risk of arm oedema following treatment for breast cancer: a three-year follow-up study. Quart. J. Med.98, 343–348 (2005). ArticleCAS Google Scholar
Tabibiazar, R. et al. Inflammatory manifestations of experimental lymphatic insufficiency. PLoS Med.3, e254 (2006). Article Google Scholar
Ferrell, R.E. et al. Hereditary lymphedema: evidence for linkage and genetic heterogeneity. Hum. Mol. Genet.7, 2073–2078 (1998). ArticleCAS Google Scholar
Irrthum, A., Karkkainen, M.J., Devriendt, K., Alitalo, K. & Vikkula, M. Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. Am. J. Hum. Genet.67, 295–301 (2000). ArticleCAS Google Scholar
Karkkainen, M.J. et al. Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat. Genet.25, 153–159 (2000). ArticleCAS Google Scholar
Baumeister, R.G., Seifert, J. & Hahn, D. Autotransplantation of lymphatic vessels. Lancet1, 147 (1981). ArticleCAS Google Scholar
Karkkainen, M.J. et al. A model for gene therapy of human hereditary lymphedema. Proc. Natl. Acad. Sci. USA98, 12677–12682 (2001). ArticleCAS Google Scholar
Szuba, A. et al. Therapeutic lymphangiogenesis with human recombinant VEGF-C. FASEB J.16, 1985–1987 (2002). ArticleCAS Google Scholar
Yoon, Y.S. et al. VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema. J. Clin. Invest.111, 717–725 (2003). ArticleCAS Google Scholar
Saaristo, A. et al. Vascular endothelial growth factor-C gene therapy restores lymphatic flow across incision wounds. FASEB J.18, 1707–1709 (2004). ArticleCAS Google Scholar
Ikomi, F. et al. Recanalization of the collecting lymphatics in rabbit hind leg. Microcirculation13, 365–376 (2006). Article Google Scholar
Saaristo, A. et al. Lymphangiogenic gene therapy with minimal blood vascular side effects. J. Exp. Med.196, 719–730 (2002). ArticleCAS Google Scholar
Thurston, G. et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science286, 2511–2514 (1999). ArticleCAS Google Scholar
Banerji, S. et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J. Cell Biol.144, 789–801 (1999). ArticleCAS Google Scholar
Wigle, J.T. & Oliver, G. Prox1 function is required for the development of the murine lymphatic system. Cell98, 769–778 (1999). ArticleCAS Google Scholar
Enholm, B. et al. Adenoviral expression of vascular endothelial growth factor-C induces lymphangiogenesis in the skin. Circ. Res.88, 623–629 (2001). ArticleCAS Google Scholar
Rissanen, T.T. et al. VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circ. Res.92, 1098–1106 (2003). ArticleCAS Google Scholar
Jeltsch, M. et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science276, 1423–1425 (1997). ArticleCAS Google Scholar
Veikkola, T. et al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J.6, 1223–1231 (2001). Article Google Scholar
Karpanen, T. et al. Lymphangiogenic growth factor responsiveness is modulated by postnatal lymphatic vessel maturation. Am. J. Pathol.169, 708–718 (2006). ArticleCAS Google Scholar
Dor, Y. et al. Conditional switching of VEGF provides new insights into adult neovascularization and pro-angiogenic therapy. EMBO J.21, 1939–1947 (2002). ArticleCAS Google Scholar
Pipp, F. et al. VEGFR-1-selective VEGF homologue PlGF is arteriogenic: evidence for a monocyte-mediated mechanism. Circ. Res.92, 378–385 (2003). ArticleCAS Google Scholar
Schaper, W. & Scholz, D. Factors regulating arteriogenesis. Arterioscler. Thromb. Vasc. Biol.23, 1143–1151 (2003). ArticleCAS Google Scholar
Garcia-Cardena, G., Comander, J., Anderson, K.R., Blackman, B.R. & Gimbrone, M.A., Jr. Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc. Natl. Acad. Sci. USA98, 4478–4485 (2001). ArticleCAS Google Scholar
Ng, C.P., Helm, C.L. & Swartz, M.A. Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro. Microvasc. Res.68, 258–264 (2004). Article Google Scholar
Ito, W.D. et al. Monocyte chemotactic protein-1 increases collateral and peripheral conductance after femoral artery occlusion. Circ. Res.80, 829–837 (1997). ArticleCAS Google Scholar
Arras, M. et al. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J. Clin. Invest.101, 40–50 (1998). ArticleCAS Google Scholar
Skobe, M. et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat. Med.7, 192–198 (2001). ArticleCAS Google Scholar
Saaristo, A. et al. Vascular endothelial growth factor-C accelerates diabetic wound healing. Am. J. Pathol.169, 1080–1087 (2006). ArticleCAS Google Scholar
Makinen, T. et al. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes. Dev.19, 397–410 (2005). Article Google Scholar
Baluk, P. et al. Functionally specialized junctions between endothelial cells of lymphatic vessels. J. Exp. Med.204, 2349–2362 (2007). ArticleCAS Google Scholar
Cao, R. et al. PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell6, 333–345 (2004). ArticleCAS Google Scholar
Paik, J.H. et al. Sphingosine 1-phosphate receptor regulation of N-cadherin mediates vascular stabilization. Genes. Dev.18, 2392–2403 (2004). ArticleCAS Google Scholar
Armulik, A., Abramsson, A. & Betsholtz, C. Endothelial/pericyte interactions. Circ. Res.97, 512–523 (2005). ArticleCAS Google Scholar
Petrova, T.V. et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat. Med.10, 974–981 (2004). ArticleCAS Google Scholar
Mellor, R.H. et al. Mutations in FOXC2 are strongly associated with primary valve failure in veins of the lower limb. Circulation115, 1912–1920 (2007). ArticleCAS Google Scholar
Mebius, R.E., Streeter, P.R., Breve, J., Duijvestijn, A.M. & Kraal, G. The influence of afferent lymphatic vessel interruption on vascular addressin expression. J. Cell. Biol.115, 85–95 (1991). ArticleCAS Google Scholar
Rabson, J.A., Geyer, S.J., Levine, G., Swartz, W.M. & Futrell, J.W. Tumor immunity in rat lymph nodes following transplantation. Ann. Surg.196, 92–99 (1982). ArticleCAS Google Scholar
Becker, C., Assouad, J., Riquet, M. & Hidden, G. Postmastectomy lymphedema: long-term results following microsurgical lymph node transplantation. Ann. Surg.243, 313–315 (2006). Article Google Scholar
Vintersten, K. et al. Mouse in red: red fluorescent protein expression in mouse ES cells, embryos, and adult animals. Genesis40, 241–246 (2004). ArticleCAS Google Scholar
Kozaki, K. et al. Establishment and characterization of a human lung cancer cell line NCI-H460-LNM35 with consistent lymphogenous metastasis via both subcutaneous and orthotopic propagation. Cancer Res.60, 2535–2340 (2000). CASPubMed Google Scholar
He, Y. et al. Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res.65, 4739–4746 (2005). ArticleCAS Google Scholar
Harrell, M.I., Iritani, B.M. & Ruddell, A. Tumor-induced sentinel lymph node lymphangiogenesis and increased lymph flow precede melanoma metastasis. Am. J. Pathol.170, 774–786 (2007). Article Google Scholar
Makinen, T. et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J.20, 4762–4773 (2001). ArticleCAS Google Scholar
Kriehuber, E. et al. Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J. Exp. Med.194, 797–808 (2001). ArticleCAS Google Scholar
Baluk, P. et al. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J. Clin. Invest.115, 247–257 (2005). ArticleCAS Google Scholar
Karkkainen, M.J. et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol.5, 74–80 (2004). ArticleCAS Google Scholar