Nitric oxide in the human respiratory cycle (original) (raw)

References

  1. Andrews, D.A. & Low, P.S. Role of red blood cells in thrombosis. Curr. Opin. Hematol. 6, 76–82 (1999).
    Article CAS Google Scholar
  2. Hart, R.G. & Kanter, M.C. Hematologic disorders and ischemic stroke. A selective review. Stroke 21, 1111–1121 (1990).
    Article CAS Google Scholar
  3. Embury, S.H., Mohandas, N., Paszty, C., Cooper, P. & Cheung, A.T. In vivo blood flow abnormalities in the transgenic knockout sickle cell mouse. J. Clin. Invest. 103, 915–920 (1999).
    Article CAS Google Scholar
  4. Reddy, P.L., Bowie, L.J. & Callistein, S. Binding of nitric oxide to thiols and hemes in hemoglobin H: implications for α-thalassemia and hypertension. Clin. Chem. 43, 1442–1447 (1997).
    CAS PubMed Google Scholar
  5. Ruschitzka, F.T. et al. Nitric oxide prevents cardiovascular disease and determines survival in polyglobulic mice overexpressing erythropoietin. Proc. Natl. Acad. Sci. USA 97, 11609–11613 (2000).
    Article CAS Google Scholar
  6. Deem, S., Swenson, E.R., Alberts, M.K., Hedges, R.G. & Bishop, M.J. Red-blood-cell augmentation of hypoxic pulmonary vasoconstriction: hematocrit dependence and the importance of nitric oxide. Am. J. Respir. Crit. Care Med. 157, 1181–1186 (1998).
    Article CAS Google Scholar
  7. Cirillo, M., Laurenzi, M., Trevisan, M. & Stamler, J. Hematocrit, blood pressure, and hypertension. The Gubbio Population Study. Hypertension 20, 319–326 (1992).
    Article CAS Google Scholar
  8. Stephansson, O., Dickman, P.W., Johansson, A. & Cnattingius, S. Maternal hemoglobin concentration during pregnancy and risk of stillbirth. JAMA 284, 2611–2617 (2000).
    Article CAS Google Scholar
  9. Besarab, A. et al. The effects of normal as compared with low hematocrit values in patients with cardiac disease who are receiving hemodialysis and epoetin. N. Engl. J. Med. 339, 584–590 (1998).
    Article CAS Google Scholar
  10. Hebert, P.C. et al. A multicenter, randomized, controlled clinical trial of transfusion requirements in critical care. Transfusion Requirements in Critical Care Investigators, Canadian Critical Care Trials Group. N. Engl. J. Med. 340, 409–417 (1999); erratum: 340, 1056 (1999).
    Article CAS Google Scholar
  11. Ketcham, E.M. & Cairns, C.B. Hemoglobin-based oxygen carriers: development and clinical potential. Ann. Emerg. Med. 33, 326–337 (1999).
    Article CAS Google Scholar
  12. French, J.A., 2nd et al. Mechanisms of stroke in sickle cell disease: sickle erythrocytes decrease cerebral blood flow in rats after nitric oxide synthase inhibition. Blood 89, 4591–4599 (1997).
    CAS PubMed Google Scholar
  13. Stamler, J.S. et al. Blood flow regulation by S-nitrosohemoglobin in the physiological oxygen gradient. Science 276, 2034–2037 (1997).
    Article CAS Google Scholar
  14. McMahon, T.J. & Stamler, J.S. Concerted nitric oxide/oxygen delivery by hemoglobin. Methods Enzymol. 301, 99–114 (1999).
    Article CAS Google Scholar
  15. Antonini, E. & Brunori, M. Hemoglobin and myoglobin in their reactions with ligands. in Frontiers in Biology (ed. Neuberger, A. & Tatum, E.L.) 13 (Elsevier, Amsterdam, 1971).
    Google Scholar
  16. Jia, L., Bonaventura, C., Bonaventura, J. & Stamler, J.S. S-nitrosohaemoglobin: a dynamic activity of blood involved in vascular control. Nature 380, 221–226 (1996).
    Article CAS Google Scholar
  17. Perutz, M.F., Wilkinson, A.J., Paoli, M. & Dodson, G.G. The stereochemical mechanism of the cooperative effects in hemoglobin revisited. Annu. Rev. Biophys. Biomol. Struct. 27, 1–34 (1998).
    Article CAS Google Scholar
  18. Stamler, J.S., Lamas, S. & Fang, F.C. Nitrosylation. The prototypic redox-based signaling mechanism. Cell 106, 675–683 (2001).
    Article CAS Google Scholar
  19. McMahon, T.J., Stone, A.E., Bonaventura, J., Singel, D.J. & Stamler, J.S. Functional coupling of oxygen binding and vasoactivity in S-nitrosohemoglobin. J. Biol. Chem. 275, 16738–16745 (2000).
    Article CAS Google Scholar
  20. Gow, A.J. & Stamler, J.S. Reactions between nitric oxide and haemoglobin under physiological conditions. Nature 391, 169–173 (1998).
    Article CAS Google Scholar
  21. Gow, A.J., Luchsinger, B.P., Pawloski, J.R., Singel, D.J. & Stamler, J.S. The oxyhemoglobin reaction of nitric oxide. Proc. Natl. Acad. Sci. USA 96, 9027–9032 (1999).
    Article CAS Google Scholar
  22. Pezacki, J.P., Ship, N.J. & Kluger, R. Release of nitric oxide from S-nitrosohemoglobin. Electron transfer as a response to deoxygenation. J. Am. Chem. Soc. 123, 4615–4616 (2001).
    Article CAS Google Scholar
  23. Padron, J., Peiro, C., Cercas, E., Llergo, J.L. & Sanchez-Ferrer, C.F. Enhancement of S-nitrosylation in glycosylated hemoglobin. Biochem. Biophys. Res. Commun. 271, 217–221 (2000).
    Article CAS Google Scholar
  24. Lipton, A.J. et al. S-nitrosothiols signal the ventilatory response to hypoxia. Nature 413, 171–174 (2001).
    Article CAS Google Scholar
  25. Pawloski, J.R., Hess, D.T. & Stamler, J.S. Export by red blood cells of nitric oxide bioactivity. Nature 409, 622–626 (2001).
    Article CAS Google Scholar
  26. Tsuda, K., Kimura, K., Nishio, I. & Masuyama, Y. Nitric oxide improves membrane fluidity of erythrocytes in essential hypertension: an electron paramagnetic resonance investigation. Biochem. Biophys. Res. Commun. 275, 946–954 (2000).
    Article CAS Google Scholar
  27. Balagopalakrishna, C. et al. Superoxide produced in the heme pocket of the β-chain of hemoglobin reacts with the β-93 cysteine to produce a thiyl radical. Biochemistry 37, 13194–13202 (1998).
    Article CAS Google Scholar
  28. Coburn, R.F., Ploegmakers, F., Gondrie, P. & Abboud, R. Myocardial myoglobin oxygen tension. Am. J. Physiol. 224, 870–876 (1973).
    Article CAS Google Scholar
  29. Gorczynski, R.J. & Duling, B.R. Role of oxygen in arteriolar functional vasodilation in hamster striated muscle. Am. J. Physiol. 235, H505–H515 (1978).
    CAS PubMed Google Scholar
  30. Freeman, G., Dyer, R.L., Juhos, L.T., St. John, G.A. & Anbar, M. Identification of nitric oxide (NO) in human blood. Arch. Environ. Health 33, 19–23 (1978).
    Article CAS Google Scholar
  31. Kosaka, H. et al. Direct proof of nitric oxide formation from a nitrovasodilator metabolised by erythrocytes. Biochem. Biophys. Res. Commun. 204, 1055–1060 (1994).
    Article CAS Google Scholar
  32. Roccatello, D. et al. Early increase in blood nitric oxide, detected by electron paramagnetic resonance as nitrosylhaemoglobin, in haemodialysis. Nephrol. Dial. Transplant 12, 292–297 (1997).
    Article CAS Google Scholar
  33. Funai, E.F., Davidson, A., Seligman, S.P. & Finlay, T.H. S-nitrosohemoglobin in the fetal circulation may represent a cycle for blood pressure regulation. Biochem. Biophys. Res. Commun. 239, 875–877 (1997).
    Article CAS Google Scholar
  34. Weinberg, J.B., Gilkeson, G.S., Mason, R.P. & Chamulitrat, W. Nitrosylation of blood hemoglobin and renal nonheme proteins in autoimmune MRL-lpr/lpr mice. Free Radic. Biol. Med. 24, 191–196 (1998).
    Article CAS Google Scholar
  35. Kohno, M., Masumizu, T. & Mori, A. ESR demonstration of nitric oxide production from nitroglycerin and sodium nitrite in the blood of rats. Free Radic. Biol. Med. 18, 451–457 (1995).
    Article CAS Google Scholar
  36. Takahashi, Y. et al. Nitrosyl hemoglobin in blood of normoxic and hypoxic sheep during nitric oxide inhalation. Am. J. Physiol. 274, H349–H357 (1998).
    Article CAS Google Scholar
  37. Gladwin, M.T. et al. Relative role of heme nitrosylation and β-cysteine 93 nitrosation in the transport and metabolism of nitric oxide by hemoglobin in the human circulation. Proc. Natl. Acad. Sci. USA 97, 9943–9948 (2000).
    Article CAS Google Scholar
  38. Park, K.H., Rubin, L.E., Gross, S.S. & Levi, R. Nitric oxide is a mediator of hypoxic coronary vasodilatation. Relation to adenosine and cyclooxygenase-derived metabolites. Circ. Res. 71, 992–1001 (1992).
    Article CAS Google Scholar
  39. Daut, J. et al. Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science 247, 1341–1344 (1990).
    Article CAS Google Scholar
  40. Pinard, E., Puiroud, S. & Seylaz, J. Role of adenosine in cerebral hypoxic hyperemia in the unanesthetized rabbit. Brain Res. 481, 124–130 (1989).
    Article CAS Google Scholar
  41. Baur, T.S., Brodowicz, G.R. & Lamb, D.R. Indomethacin suppresses the coronary flow response to hypoxia in exercise trained and sedentary rats. Cardiovasc Res. 24, 733–736 (1990).
    Article CAS Google Scholar
  42. Heyman, S.N., Goldfarb, M., Darmon, D. & Brezis, M. Tissue oxygenation modifies nitric oxide bioavailability. Microcirculation 6, 199–203 (1999).
    Article CAS Google Scholar
  43. de Belder, A.J., MacAllister, R., Radomski, M.W., Moncada, S. & Vallance, P.J. Effects of S-nitroso-glutathione in the human forearm circulation: evidence for selective inhibition of platelet activation. Cardiovasc Res. 28, 691–694 (1994).
    Article CAS Google Scholar
  44. Blitzer, M.L., Loh, E., Roddy, M.A., Stamler, J.S. & Creager, M.A. Endothelium-derived nitric oxide regulates systemic and pulmonary vascular resistance during acute hypoxia in humans. J. Am. Coll. Cardiol. 28, 591–596 (1996).
    Article CAS Google Scholar
  45. Wu, W.C., Rathore, S.S., Wang, Y., Radford, M.J. & Krumholz, H.M. Blood transfusion in elderly patients with acute myocardial infarction. N. Engl. J. Med. 345, 1230–1236 (2001).
    Article CAS Google Scholar

Download references