Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase (original) (raw)

References

  1. Kahn, B.B. & Flier, J.S. Obesity and insulin resistance. J. Clin. Invest. 106, 473–481 (2000).
    Article CAS Google Scholar
  2. Shulman, G.I. Cellular mechanisms of insulin resistance. J. Clin. Invest. 106, 171–176 (2000).
    Article CAS Google Scholar
  3. Arita, Y. et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 257, 79–83 (1999).
    Article CAS Google Scholar
  4. Fruebis, J. et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl. Acad. Sci. USA 98, 2005–2010 (2001).
    Article CAS Google Scholar
  5. Yamauchi, T. et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nature Med. 7, 941–946 (2001).
    Article CAS Google Scholar
  6. Berg, A.H., Combs, T.P., Du, X., Brownlee, M. & Scherer, P.E. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nature Med. 7, 947–953 (2001).
    Article CAS Google Scholar
  7. Combs, T.P., Bergm, A.H., Obici, S., Scherer, P.E. & Rossetti, L. Endogenous glucose production is inhibited by the adipose-derived protein Acrp30. J. Clin. Invest. 108, 1875–1881 (2001).
    Article CAS Google Scholar
  8. Abu-Elheiga, L., Matzuk, M.M., Abo-Hashema, K.A.H. & Wakil, S.J. Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291, 2613–2616 (2001).
    Article CAS Google Scholar
  9. Hardie, D.G., Carling, D. & Carlson, M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Ann. Rev. Biochem. 67, 821–855 (1998).
    Article CAS Google Scholar
  10. Winder, W.W. & Hardie, D.G. AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes. Am. J. Physiol. 277, E1–E10 (1999).
    CAS PubMed Google Scholar
  11. Mu, J., Brozinick, J.T. Jr., Valladares, O., Bucan, M. & Birnbaum, M.J. A role for AMP-activated protein kinase in contraction—and hypoxia-regulated glucose transport in skeletal muscle. Mol. Cell. 7, 1085–1094 (2000).
    Article Google Scholar
  12. Lochhead, P.A., Salt, I.P., Walker, K.S., Hardie, D.G. & Sutherland, C. 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase. Diabetes 49, 896–903 (2000).
    Article CAS Google Scholar
  13. Stein, S.C., Woods, A., Jones, N.A., Davison, M.D. & Carling, D. The regulation of AMP-activated protein kinase by phosphorylation. Biochem. J. 345, 437–443 (2000).
    Article CAS Google Scholar
  14. Woods, A. et al. Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Mol. Cell. Biol. 20, 6704–6711 (2000).
    Article CAS Google Scholar
  15. Minokoshi, Y. et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 415, 339–343 (2002).
    Article CAS Google Scholar
  16. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).
    Article CAS Google Scholar
  17. Fryer, L.G., Parbu-Patel, A. & Carling, D. The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J. Biol. Chem. 277, 25226–25232 (2002).
    Article CAS Google Scholar
  18. Tsao, T.S, Murrey, H.E., Hug, C., Lee, D.H. & Lodish, H.F. Oligomerization state-dependent activation of NF-κB signaling pathway by adipocyte complement-related protein of 30 kDa (Acrp30). J. Biol. Chem. 277, 29359–29362 (2002).
    Article CAS Google Scholar
  19. Woods, A., Salt, I., Scott, J., Hardie, D.G. & Carling, D. The α1 and α2 isoforms of the AMP-activated protein kinase have similar activities in rat liver but exhibit differences in substrate specificity in vitro. FEBS Lett. 397, 347–351 (1996).
    Article CAS Google Scholar
  20. Hayashi, T. et al. Metabolic stress and altered glucose transport. Activation of AMP-activated protein kinase as a unifying coupling mechanism. Diabetes 49, 527–531 (2000).
    Article CAS Google Scholar
  21. Kaburagi, Y. et al. Site-directed mutagenesis of the juxtamembrane domain of the human insulin receptor. J. Biol. Chem. 268, 16610–166222 (1993).
    CAS PubMed Google Scholar
  22. Onishi, M. et al. Identification and characterization of a constitutively active STAT5 mutant that promotes cell proliferation. Mol. Cell. Biol. 18, 3871–3879 (1996).
    Article Google Scholar
  23. Tontonoz, P., Hu, E. & Spiegelman, B.M. Stimulation of adipogenesis in fibroblasts by PPAR γ2, a lipid-activated protein transcription factor. Cell 79, 1147–1156 (1994).
    Article CAS Google Scholar
  24. Ueki, K. et al. Restored insulin-sensitivity in IRS-1-deficient mice treated by adenovirus-mediated gene therapy. J. Clin. Invest. 105, 1437–1445 (2000).
    Article CAS Google Scholar
  25. Tsubamoto, Y. et al. Hexamminecobalt(III) chloride inhibits glucose-induced insulin secretion at the exocytotic process. J. Biol. Chem. 276, 2979–2985 (2001).
    Article CAS Google Scholar

Download references