Microfluidic scaffolds for tissue engineering (original) (raw)
Kamei, M. et al. Endothelial tubes assemble from intracellular vacuoles in vivo. Nature442, 453–456 (2006). ArticleCAS Google Scholar
Viravaidya, K., Sin, A. & Shuler, M. L. Development of a microscale cell culture analog to probe naphthalene toxicity. Biotechnol. Progr.20, 316–323 (2004). ArticleCAS Google Scholar
Langer, R. & Vacanti, J. P. Tissue engineering. Science260, 920–926 (1993). ArticleCAS Google Scholar
Cao, Y. L., Vacanti, J. P., Paige, K. T., Upton, J. & Vacanti, C. A. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast. Reconstr. Surg.100, 297–302 (1997). ArticleCAS Google Scholar
Chang, S. C. N., Tobias, G., Roy, A. K., Vacanti, C. A. & Bonassar, L. J. Tissue engineering of autologous cartilage for craniofacial reconstruction by injection molding. Plast. Reconstr. Surg.112, 793–799 (2003). Article Google Scholar
Fittkau, M. H. et al. The selective modulation of endothelial cell mobility on RGD peptide containing surfaces by YIGSR peptides. Biomaterials26, 167–174 (2005). ArticleCAS Google Scholar
Urech, L., Bittermann, A. G., Hubbell, J. A. & Hall, H. Mechanical properties, proteolytic degradability and biological modifications affect angiogenic process extension into native and modified fibrin matrices in vitro. Biomaterials26, 1369–1379 (2005). ArticleCAS Google Scholar
Freed, L. E. et al. Advanced tools for tissue engineering: Scaffolds, bioreactors, and signaling. Tissue Eng.12, 3285–3305 (2006). ArticleCAS Google Scholar
Pazzano, D. et al. Comparison of chondrogenesis in static and perfused bioreactor culture. Biotechnol. Progr.16, 893–896 (2000). ArticleCAS Google Scholar
Powers, M. J. et al. A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol. Bioeng.78, 257–269 (2002). ArticleCAS Google Scholar
Albrecht, D. R., Underhill, G. H., Wassermann, T. B., Sah, R. L. & Bhatia, S. N. Probing the role of multicellular organization in three-dimensional microenvironments. Nature Methods3, 369–375 (2006). ArticleCAS Google Scholar
Tang, M. D., Golden, A. P. & Tien, J. Fabrication of collagen gels that contain patterned, micrometer-scale cavities. Adv. Mater.16, 1345–1348 (2004). ArticleCAS Google Scholar
Sivaraman, A. et al. A microscale in vitro physiological model of the liver: Predictive screens for drug metabolism and enzyme induction. Curr. Drug. Metab.6, 569–591 (2005). ArticleCAS Google Scholar
Chrobak, K. M., Potter, D. R. & Tien, J. Formation of perfused, functional microvascular tubes in vitro. Microvasc. Res.71, 185–196 (2006). ArticleCAS Google Scholar
Fidkowski, C. et al. Endothelialized microvasculature based on a biodegradable elastomer. Tissue Eng.11, 302–309 (2005). ArticleCAS Google Scholar
Cabodi, M. et al. A microfluidic biomaterial. J. Am. Chem. Soc.127, 13788–13789 (2005). ArticleCAS Google Scholar
Golden, A. P. & Tien, J. Fabrication of microfluidic hydrogels using molded gelatin as a sacrificial element. Lab Chip7, 720–725 (2007). ArticleCAS Google Scholar
Ling, Y. et al. A cell-laden microfluidic hydrogel. Lab Chip7, 756–762 (2007). ArticleCAS Google Scholar
Fournier, R. L. Basic Transport Phenomena in Biomedical Engineering 1st edn (Taylor & Francis, London, 1999). Google Scholar
Diao, J. P. et al. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis. Lab Chip6, 381–388 (2006). ArticleCAS Google Scholar
Rosoff, W. J. et al. A new chemotaxis assay shows the extreme sensitivity of axons to molecular gradients. Nature Neurosci.7, 678–682 (2004). ArticleCAS Google Scholar
Dertinger, S. K. W., Jiang, X. Y., Li, Z. Y., Murthy, V. N. & Whitesides, G. M. Gradients of substrate-bound laminin orient axonal specification of neurons. Proc. Natl Acad. Sci. USA99, 12542–12547 (2002). ArticleCAS Google Scholar
Tuli, R. et al. Human mesenchymal progenitor cell-based tissue engineering of a single-unit osteochondral construct. Tissue Eng.10, 1169–1179 (2004). ArticleCAS Google Scholar
Rahaman, M. N. & Mao, J. J. Stem cell-based composite tissue constructs for regenerative medicine. Biotechnol. Bioeng.91, 261–284 (2005). ArticleCAS Google Scholar
Lee, C. S. D. et al. Integration of layered chondrocyte-seeded alginate hydrogel scaffolds. Biomaterials28, 2978–2993 (2007). Article Google Scholar
Gleghorn, J. P., Lee, C. S. D., Cabodi, M., Stroock, A. D. & Bonassar, L. J. Adhesive properties of laminated alginate gels for tissue engineering of layered structures. J. Biomed. Mater. Res. A published online 5 September 2007 (doi:10.1002/jbm.a.31565). ArticleCAS Google Scholar
Mizuno, H. et al. Biomechanical and biochemical characterization of composite tissue-engineered intervertebral discs. Biomaterials27, 362–370 (2006). ArticleCAS Google Scholar
Ballyns, J. J. et al. CT-guided injection molding of tissue engineered meniscus. Tans. Orthop. Res. Soc.30, 292 (2005). Google Scholar
Genes, N. G., Rowley, J. A., Mooney, D. J. & Bonassar, L. J. Effect of substrate mechanics on chondrocyte adhesion to modified alginate surfaces. Arch. Biochem. Biophys.422, 161–167 (2004). ArticleCAS Google Scholar
Rowley, J. A., Madlambayan, G. & Mooney, D. J. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials20, 45–53 (1999). ArticleCAS Google Scholar
Chang, S. C. N. et al. Injection molding of chondrocyte/alginate constructs in the shape of facial implants. J. Biomed. Mater. Res.55, 503–511 (2001). ArticleCAS Google Scholar
Lee, K. Y., Bouhadir, K. H. & Mooney, D. J. Degradation behavior of covalently cross-linked poly(aldehyde guluronate) hydrogels. Macromolecules33, 97–101 (2000). ArticleCAS Google Scholar
LeRoux, M. A., Guilak, F. & Setton, L. A. Compressive and shear properties of alginate gel: Effects of sodium ions and alginate concentration. J. Biomed. Mater. Res.47, 46–53 (1999). ArticleCAS Google Scholar
Gribbon, P. & Hardingham, T. E. Macromolecular diffusion of biological polymers measured by confocal fluorescence recovery after photobleaching. Biophys. J.75, 1032–1039 (1998). ArticleCAS Google Scholar
Bird, R. B., Stewart, W. E. & Lightfoot, E. N. Transport Phenomena 2nd edn (Wiley, Hoboken, 2002). Google Scholar
Moore, A. W. & Jorgenson, J. W. Study of zone broadening in optically gated high-speed capillary electrophoresis. Anal. Chem.65, 3550–3560 (1993). ArticleCAS Google Scholar
Schwuchow, J. M., Kern, V. D. & Sack, F. D. Tip-growing cells of the moss Ceratodon purpureus are gravitropic in high-density media. Plant Physiol.130, 2095–2100 (2002). ArticleCAS Google Scholar
Benya, P. D. & Shaffer, J. D. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell30, 215–224 (1982). ArticleCAS Google Scholar
Liu, H., Lee, Y. W. & Dean, M. F. Re-expression of differentiated proteoglycan phenotype by dedifferentiated human chondrocytes during culture in alginate beads. Biochim. Biophys. Acta1425, 505–515 (1998). ArticleCAS Google Scholar
Coward, S. M., Selden, C., Mantalaris, A. & Hodgson, H. J. F. Proliferation rates of HepG2 cells encapsulated in alginate are increased in a microgravity environment compared with static cultures. Artif. Organs29, 152–158 (2005). ArticleCAS Google Scholar
El-Ali, J., Sorger, P. K. & Jensen, K. F. Cells on chips. Nature442, 403–411 (2006). ArticleCAS Google Scholar
Matsumoto, T. et al. Mechanical strain regulates endothelial cell patterning in vitro. Tissue Eng.13, 207–217 (2007). ArticleCAS Google Scholar
Martin, I., Wendt, D. & Heberer, M. The role of bioreactors in tissue engineering. Trends Biotechnol.22, 80–86 (2004). ArticleCAS Google Scholar
Colton, C. K. Engineering challenges in cell-encapsulation technology. Trends Biotechnol.14, 158–162 (1996). ArticleCAS Google Scholar
Griffith, L. G. & Swartz, M. A. Capturing complex 3D tissue physiology in vitro. Nature Rev. Mol. Cell Biol.7, 211–224 (2006). ArticleCAS Google Scholar
Augst, A. D., Kong, H. J. & Mooney, D. J. Alginate hydrogels as biomaterials. Macromol. Biosci.6, 623–633 (2006). ArticleCAS Google Scholar
Mauck, R. L., Wang, C. C. B., Oswald, E. S., Ateshian, G. A. & Hung, C. T. The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading. Osteoarth. Cartilage11, 879–890 (2003). ArticleCAS Google Scholar
Hahn, M. S., Miller, J. S. & West, J. L. Three-dimensional biochemical and biomechanical patterning of hydrogels for guiding cell behavior. Adv. Mater.18, 2679–2684 (2006). ArticleCAS Google Scholar
Cohen, D. L., Malone, E., Lipson, H. & Bonassar, L. J. Direct freeform fabrication of seeded hydrogels in arbitrary geometries. Tissue Eng.12, 1325–1335 (2006). ArticleCAS Google Scholar
Therriault, D., White, S. R. & Lewis, J. A. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nature Mater.2, 265–271 (2003). ArticleCAS Google Scholar