Emerging applications of stimuli-responsive polymer materials (original) (raw)

References

  1. Senaratne, W., Andruzzi, L. & Ober, C. K. Self-assembled monolayers and polymer brushes in biotechnology: Current applications and future perspectives. Biomacromolecules 6, 2427–2448 (2005).
    CAS Google Scholar
  2. Jhaveri, S. J. et al. Release of nerve growth factor from HEMA hydrogel-coated substrates and its effect on the differentiation of neural cells. Biomacromolecules 10, 174–183 (2009).
    CAS Google Scholar
  3. Hoffman, A. S. The origins and evolution of “controlled” drug delivery systems. J. Control. Release 132, 153–163 (2008).
    CAS Google Scholar
  4. Bayer, C. L. & Peppas, N. A. Advances in recognitive, conductive and responsive delivery systems. J. Control. Release 132, 216–221 (2008).
    CAS Google Scholar
  5. Mendes, P. M. Stimuli-responsive surfaces for bio-applications. Chem. Soc. Rev. 37, 2512–2529 (2008).
    CAS Google Scholar
  6. Luzinov, I., Minko, S. & Tsukruk, V. V. Responsive brush layers: from tailored gradients to reversibly assembled nanoparticles. Soft Matter 4, 714–725 (2008).
    CAS Google Scholar
  7. Motornov, M. et al. Reversible tuning of wetting behaviour of polymer surface with responsive polymer brushes. Langmuir 19, 8077–8085 (2003).
    CAS Google Scholar
  8. Liu, Z. S. & Calvert, P. Multilayer hydrogels as muscle-like actuators. Adv. Mater. 12, 288–291 (2000).
    CAS Google Scholar
  9. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).
    CAS Google Scholar
  10. Tokarev, I. & Minko, S. Stimuli-responsive hydrogel thin films. Soft Matter 5, 511–524 (2009).
    CAS Google Scholar
  11. Koberstein, J. T. Molecular design of functional polymer surfaces. J. Polym. Sci. Pol. Phys. 42, 2942–2956 (2004).
    CAS Google Scholar
  12. Carey, D. H., Grunzinger, S. J. & Ferguson, G. S. Entropically influenced reconstruction at the PBD-ox/water interface: The role of physical crosslinking and rubber elasticity. Macromolecules 33, 8802–8812 (2000).
    CAS Google Scholar
  13. Draper, J., Luzinov, I., Minko, S., Tokarev, I. & Stamm, M. Mixed polymer brushes by sequential polymer addition: Anchoring layer effect. Langmuir 20, 4064–4075 (2004).
    CAS Google Scholar
  14. Motornov, M. et al. Stimuli-responsive colloidal systems from mixed brush-coated nanoparticles. Adv. Funct. Mater. 17, 2307–2314 (2007).
    CAS Google Scholar
  15. Abu-Lail, N. I., Kaholek, M., LaMattina, B., Clark, R. L. & Zauscher, S. Micro-cantilevers with end-grafted stimulus-responsive polymer brushes for actuation and sensing. Sensor. Actuat. B-Chem. 114, 371–378 (2006).
    CAS Google Scholar
  16. Ayres, N., Cyrus, C. D. & Brittain, W. J. Stimuli-responsive surfaces using polyampholyte polymer brushes prepared via atom transfer radical polymerization. Langmuir 23, 3744–3749 (2007).
    CAS Google Scholar
  17. Azzaroni, O., Brown, A. A. & Huck, W. T. S. UCST wetting transitions of polyzwitterionic brushes driven by self-association. Angew. Chem. Int. Ed. 45, 1770–1774 (2006).
    CAS Google Scholar
  18. Santer, S., Kopyshev, A., Donges, J., Yang, H. K. & Ruhe, J. Dynamically reconfigurable polymer films: Impact on nanomotion. Adv. Mater. 18, 2359–2362 (2006).
    CAS Google Scholar
  19. Wu, T. et al. Behaviour of surface-anchored poly(acrylic acid) brushes with grafting density gradients on solid substrates: 1. Experiment. Macromolecules 40, 8756–8764 (2007).
    CAS Google Scholar
  20. Xu, C. et al. Effect of block length on solvent response of block copolymer brushes: Combinatorial study with block copolymer brush gradients. Macromolecules 39, 3359–3364 (2006).
    CAS Google Scholar
  21. Motornov, M., Sheparovych, R., Tokarev, I., Roiter, Y. & Minko, S. Nonwettable thin films from hybrid polymer brushes can be hydrophilic. Langmuir 23, 13–19 (2007).
    CAS Google Scholar
  22. Sheparovych, R., Motornov, M. & Minko, S. Adapting low-adhesive thin films from mixed polymer brushes. Langmuir 24, 13828–13832 (2008).
    CAS Google Scholar
  23. Sheparovych, R., Motornov, M. & Minko, S. Low adhesive surfaces which adapt changing surrounding environment. Adv. Mater. 21, 1840–1844 (2009).
    CAS Google Scholar
  24. Tanaka, T. & Fillmore, D. J. Kinetics of swelling of gels. J. Chem. Phys. 70, 1214–1218 (1979).
    CAS Google Scholar
  25. Toomey, R., Freidank, D. & Ruhe, J. Swelling behaviour of thin, surface-attached polymer networks. Macromolecules 37, 882–887 (2004).
    CAS Google Scholar
  26. Crowe-Willoughby, J. A. & Genzer, J. Formation and properties of responsive siloxane-based polymeric surfaces with tunable surface reconstruction kinetics. Adv. Funct. Mater. 19, 460–469 (2009).
    CAS Google Scholar
  27. Crowe, J. A. & Genzer, J. Creating responsive surfaces with tailored wettability switching kinetics and reconstruction reversibility. J. Am. Chem. Soc. 127, 17610–17611 (2005).
    CAS Google Scholar
  28. Tokarev, I., Orlov, M. & Minko, S. Responsive polyelectrolyte gel membranes. Adv. Mater. 18, 2458–2460 (2006).
    CAS Google Scholar
  29. Tokarev, I. & Minko, S. Multiresponsive hierarchically structured membranes: new challenging biomimetic materials for biosensors, controlled release, biochemical gates and nanoreactors. Adv. Mater. 21, 241–247 (2009).
    CAS Google Scholar
  30. Tokarev, I. et al. Stimuli-responsive hydrogel membranes coupled with biocatalytic processes. ACS Appl. Mater. Interfaces 3, 532–536 (2009).
    Google Scholar
  31. Decher, G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 277, 1232–1237 (1997).
    CAS Google Scholar
  32. Lvov, Y., Ariga, K., Ichinose, I. & Kunitake, T. Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption. J. Am. Chem. Soc. 117, 6117–6123 (1995).
    CAS Google Scholar
  33. Decher, G. & Schlenoff, J. B. Multilayer Thin Films (Wiley-VCH, 2003).
    Google Scholar
  34. Itano, K., Choi, J. Y. & Rubner, M. F. Mechanism of the pH-induced discontinuous swelling/deswelling transitions of poly(allylamine hydrochloride)-containing polyelectrolyte multilayer films. Macromolecules 38, 3450–3460 (2005).
    CAS Google Scholar
  35. Kharlampieva, E., Kozlovskaya, V., Tyutina, J. & Sukhishvili, S. A. Hydrogen-bonded multilayers of thermoresponsive polymers. Macromolecules 38, 10523–10531 (2005).
    CAS Google Scholar
  36. Hua, F., Cui, T. H. & Lvov, Y. M. Ultrathin cantilevers based on polymer-ceramic nanocomposite assembled through layer-by-layer adsorption. Nano Lett. 4, 823–825 (2004).
    CAS Google Scholar
  37. Mertz, D. et al. Mechanically responding nanovalves based on polyelectrolyte multilayers. Nano Lett. 7, 657–662 (2007).
    CAS Google Scholar
  38. Urban, M. W. Intelligent polymeric coatings; current and future advances. Polym. Rev. 46, 329–339 (2006).
    CAS Google Scholar
  39. Misra, A., Jarrett, W. L. & Urban, M. W. Fluoromethacrylate-containing colloidal dispersions: Phospholipid-assisted synthesis, particle morphology, and temperature-responsive stratification. Macromolecules 40, 6190–6198 (2007).
    CAS Google Scholar
  40. Motornov, M., Sheparovych, R., Lupitskyy, R., MacWilliams, E. & Minko, S. Superhydrophobic surfaces generated from water-borne dispersions of hierarchically assembled nanoparticles coated with a reversibly switchable shell. Adv. Mater. 20, 200–205 (2008).
    CAS Google Scholar
  41. Urban, M. W. Stratification, Stimuli-responsiveness, self-healing, and signalling in polymer networks. Prog. Polym. Sci. 34, 679–687 (2009).
    CAS Google Scholar
  42. Andreeva, D. V., Fix, D., Mohwald, H. & Shchukin, D. G. Self-healing anticorrosion coatings based on pH-sensitive polyelectrolyte/inhibitor sandwich-like nanostructures. Adv. Mater. 20, 2789–2794 (2008).
    CAS Google Scholar
  43. Bajpai, A. K., Shukla, S. K., Bhanu, S. & Kankane, S. Responsive polymers in controlled drug delivery. Prog. Polym. Sci. 33, 1088–1118 (2008).
    CAS Google Scholar
  44. Alexander, C. & Shakesheff, K. M. Responsive polymers at the biology/materials science interface. Adv. Mater. 18, 3321–3328 (2006).
    CAS Google Scholar
  45. Lutolf, M. P. et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: Engineering cell-invasion characteristics. Proc. Natl Acad. Sci. USA 100, 5413–5418 (2003).
    CAS Google Scholar
  46. Alarcon, C. D. H., Farhan, T., Osborne, V. L., Huck, W. T. S. & Alexander, C. Bioadhesion at micro-patterned stimuli-responsive polymer brushes. J. Mater. Chem. 15, 2089–2094 (2005).
    Google Scholar
  47. Ionov, L., Houbenov, N., Sidorenko, A., Stamm, M. & Minko, S. Stimuli-responsive command polymer surface for generation of protein gradients. Biointerphases 4, FA45–FA49 (2009).
    CAS Google Scholar
  48. Hayashi, G., Hagihara, M., Dohno, C. & Nakatani, K. Photoregulation of a peptide-RNA interaction on a gold surface. J. Am. Chem. Soc. 129, 8678–8679 (2007).
    CAS Google Scholar
  49. Ebara, M. et al. Temperature-responsive cell culture surfaces enable “on-off” affinity control between cell integrins and RGDS ligands. Biomacromolecules 5, 505–510 (2004).
    CAS Google Scholar
  50. Lue, S. J., Hsu, J. J. & Wei, T. C. Drug permeation modeling through the thermo-sensitive membranes of poly(_N_-isopropylacrylamide) brushes grafted onto micro-porous films. J. Membrane Sci. 321, 146–154 (2008).
    CAS Google Scholar
  51. Motornov, M. et al. Switchable selectivity for gating ion transport with mixed polyelectrolyte brushes: approaching 'smart' drug delivery systems. Nanotechnology 20, 434006 (2009).
    Google Scholar
  52. Wong, V. N. et al. Separation of peptides with polyionic nanosponges for MALDI-MS analysis. Langmuir 25, 1459–1465 (2009).
    CAS Google Scholar
  53. Nagase, K. et al. Effects of graft densities and chain lengths on separation of bioactive compounds by nanolayered thermoresponsive polymer brush surfaces. Langmuir 24, 511–517 (2008).
    CAS Google Scholar
  54. Edmondson, S., Frieda, K., Comrie, J. E., Onck, P. R. & Huck, W. T. S. Buckling in quasi-2D polymers. Adv. Mater. 18, 724–728 (2006).
    CAS Google Scholar
  55. Zhou, F., Shu, W. M., Welland, M. E. & Huck, W. T. S. Highly reversible and multi-stage cantilever actuation driven by polyelectrolyte brushes. J. Am. Chem. Soc. 128, 5326–5327 (2006).
    CAS Google Scholar
  56. Valiaev, A., Abu-Lail, N. I., Lim, D. W., Chilkoti, A. & Zauscher, S. Microcantilever sensing and actuation with end-grafted stimulus-responsive elastin-like polypeptides. Langmuir 23, 339–344 (2007).
    CAS Google Scholar
  57. Zhou, F. et al. Polyelectrolyte brush amplified electroactuation of microcantilevers. Nano Lett. 8, 725–730 (2008).
    Google Scholar
  58. Singamaneni, S. et al. Bimaterial microcantilevers as a hybrid sensing platform. Adv. Mater. 20, 653–680 (2008).
    CAS Google Scholar
  59. Jonas, A. M., Hu, Z. J., Glinel, K. & Huck, W. T. S. Effect of nanoconfinement on the collapse transition of responsive polymer brushes. Nano Lett. 8, 3819–3824 (2008).
    CAS Google Scholar
  60. Lee, W. K., Patra, M., Linse, P. & Zauscher, S. Scaling behaviour of nanopatterned polymer brushes. Small 3, 63–66 (2007).
    CAS Google Scholar
  61. Raynor, J. E., Petrie, T. A., Garcia, A. J. & Collard, D. M. Controlling cell adhesion to titanium: Functionalization of poly[oligo(ethylene glycol)methacrylate] brushes with cell-adhesive peptides. Adv. Mater. 19, 1724–1728 (2007).
    CAS Google Scholar
  62. Howse, J. R. et al. Reciprocating power generation in a chemically driven synthetic muscle. Nano Lett. 6, 73–77 (2006).
    CAS Google Scholar
  63. Merlitz, H., He, G. L., Wu, C. X. & Sommer, J. U. Surface instabilities of monodisperse and densely grafted polymer brushes. Macromolecules 41, 5070–5072 (2008).
    CAS Google Scholar
  64. Tokareva, I., Minko, S., Fendler, J. H. & Hutter, E. Nanosensors based on responsive polymer brushes and gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. J. Am. Chem. Soc. 126, 15950–15951 (2004).
    CAS Google Scholar
  65. Burg, T. P. et al. Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446, 1066–1069 (2007).
    CAS Google Scholar
  66. Gupta, S. et al. Gold nanoparticles immobilized on stimuli responsive polymer brushes as nanosensors. Macromolecules 41, 8152–8158 (2008).
    CAS Google Scholar
  67. Kozlovskaya, V. et al. Ultrathin layer-by-layer hydrogels with incorporated gold nanorods as pH-sensitive optical materials. Chem. Mater. 20, 7474–7485 (2008).
    CAS Google Scholar
  68. Podsiadlo, P. et al. Exponential growth of LBL films with incorporated inorganic sheets. Nano Lett. 8, 1762–1770 (2008).
    CAS Google Scholar
  69. Jiang, G. Q., Baba, A. & Advincula, R. Nanopatterning and fabrication of memory devices from layer-by-layer poly(3,4-ethylenedioxythiophene)-poly(styrene sulphonate) ultrathin films. Langmuir 23, 817–825 (2007).
    CAS Google Scholar
  70. Mitamura, K., Imae, T., Tian, S. & Knoll, W. Surface plasmon fluorescence investigation of energy-transfer-controllable organic thin films. Langmuir 24, 2266–2270 (2008).
    CAS Google Scholar
  71. Hilt, J. Z., Gupta, A. K., Bashir, R. & Peppas, N. A. Ultrasensitive biomems sensors based on microcantilevers patterned with environmentally responsive hydrogels. Biomed. Microdevices 5, 177–184 (2003).
    CAS Google Scholar
  72. Mack, N. H. et al. Optical transduction of chemical forces. Nano Lett 7, 733–737 (2007).
    CAS Google Scholar
  73. Kang, J. H. et al. Thermoresponsive hydrogel photonic crystals by three-dimensional holographic lithography. Adv. Mater. 20, 3061–3065 (2008).
    CAS Google Scholar
  74. Ben-Moshe, M., Alexeev, V. L. & Asher, S. A. Fast responsive crystalline colloidal array photonic crystal glucose sensors. Anal. Chem. 78, 5149–5157 (2006).
    CAS Google Scholar
  75. Jiang, C. Y., Markutsya, S., Pikus, Y. & Tsukruk, V. V. Freely suspended nanocomposite membranes as highly sensitive sensors. Nature Mater. 3, 721–728 (2004).
    CAS Google Scholar
  76. Dong, L., Agarwal, A. K., Beebe, D. J. & Jiang, H. R. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442, 551–554 (2006).
    CAS Google Scholar
  77. Hendrikson, G. R. & Lyon, L. A. Bioresponsive hydrogels for sensing application. Soft Matter 5, 29–35 (2009).
    Google Scholar
  78. Sidorenko, A., Krupenkin, T., Taylor, A., Fratzl, P. & Aizenberg, J. Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science 315, 487–490 (2007).
    CAS Google Scholar
  79. Kuksenok, O., Yashin, V. V. & Balazs, A. C. Mechanically induced chemical oscillations and motion in responsive gels. Soft Matter 3, 1138–1144 (2007).
    CAS Google Scholar
  80. Discher, D. E. et al. Emerging applications of polymersomes in delivery: From molecular dynamics to shrinkage of tumours. Prog. Polym. Sci. 32, 838–857 (2007).
    CAS Google Scholar
  81. Blanazs, A., Armes, S. P. & Ryan, A. J. Self-assembled block copolymer aggregates: From micelles to vesicles and their biological applications. Macromol. Rapid Comm. 30, 267–277 (2009).
    CAS Google Scholar
  82. Qi, L., Chapel, J. P., Castaing, J. C., Fresnais, J. & Berret, J. F. Organic versus hybrid coacervate complexes: co-assembly and adsorption properties. Soft Matter 4, 577–585 (2008).
    CAS Google Scholar
  83. Yan, Y. et al. Hierarchical self-assembly in solutions containing metal ions, ligand, and diblock copolymer. Angew. Chem. Int. Ed. 46, 1807–1809 (2007).
    CAS Google Scholar
  84. Voets, I. K. et al. Spontaneous symmetry breaking: formation of Janus micelles. Soft Matter 5, 999–1005 (2009).
    CAS Google Scholar
  85. Li, M. H. & Keller, P. Stimuli-responsive polymer vesicles. Soft Matter, 5, 927–937 (2009).
    CAS Google Scholar
  86. Chiu, H. C., Lin, Y. W., Huang, Y. F., Chuang, C. K. & Chern, C. S. Polymer vesicles containing small vesicles within interior aqueous compartments and pH-responsive transmembrane channels. Angew. Chem. Int. Ed. 47, 1875–1878 (2008).
    CAS Google Scholar
  87. Oh, J. K., Drumright, R., Siegwart, D. J. & Matyjaszewski, K. The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 33, 448–477 (2008).
    CAS Google Scholar
  88. Morimoto, N., Qiu, X. P., Winnik, F. M. & Akiyoshi, K. Dual stimuli-responsive nanogels by self-assembly of polysaccharides lightly grafted with thiol-terminated poly(_N_-isopropylacrylamide) chains. Macromolecules 41, 5985–5987 (2008).
    CAS Google Scholar
  89. Morimoto, N., Winnik, F. M. & Akiyoshi, K. Botryoidal assembly of cholesteryl-pullulan/poly(_N_-isopropylacrylamide) nanogels. Langmuir 23, 217–223 (2007).
    CAS Google Scholar
  90. Motornov, M. et al. “Chemical transformers” from nanoparticle ensembles operated with logic. Nano Lett. 8, 2993–2997 (2008).
    CAS Google Scholar
  91. Donath, E., Sukhorukov, G. B., Caruso, F., Davis, S. A. & Möhwald, H. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew. Chem. Int. Ed. 37, 2202–2205 (1998).
    CAS Google Scholar
  92. Zelikin, A. N., Li, Q. & Caruso, F. Disulphide-stabilized poly(methacrylic acid) capsules: Formation, crosslinking, and degradation behaviour. Chem. Mater. 20, 2655–2661 (2008).
    CAS Google Scholar
  93. Levy, T., Dejugnat, C. & Sukhorukov, G. B. Polymer microcapsules with carbohydrate-sensitive properties. Adv. Funct. Mater. 18, 1586–1594 (2008).
    CAS Google Scholar
  94. Kozlovskaya, V., Kharlampieva, E., Mansfield, M. L. & Sukhishvili, S. A. Poly(methacrylic acid) hydrogel films and capsules: Response to pH and ionic strength, and encapsulation of macromolecules. Chem. Mater. 18, 328–336 (2006).
    CAS Google Scholar
  95. Edwards, E. W., Chanana, M., Wang, D. & Möhwald, H. Stimuli-responsive reversible transport of nanoparticles across water/oil interfaces. Angew. Chem. Int. Ed. 47, 320–323 (2008).
    CAS Google Scholar
  96. Binks, B. P., Murakami, R., Armes, S. P. & Fujii, S. Temperature-induced inversion of nanoparticle-stabilized emulsions. Angew. Chem. Int. Ed. 44, 4795–4798 (2005).
    CAS Google Scholar
  97. Binks, B. P. & Murakami, R. Phase inversion of particle-stabilized materials from foams to dry water. Nature Mater. 5, 865–869 (2006).
    CAS Google Scholar
  98. Lu, Y., Mei, Y., Drechsler, M. & Ballauff, M. Thermosensitive core-shell particles as carriers for Ag nanoparticles: Modulating the catalytic activity by a phase transition in networks. Angew. Chem. Int. Ed. 45, 813–816 (2006).
    CAS Google Scholar
  99. Lu, Y. et al. Thermosensitive core-shell microgel as a “nanoreactor” for catalytic active metal nanoparticles. J. Mater. Chem. 19, 3955–3961 (2009).
    CAS Google Scholar
  100. Skirtach, A. G. et al. Laser-induced release of encapsulated materials inside living cells. Angew. Chem. Int. Ed. 45, 4612–4617 (2006).
    CAS Google Scholar
  101. Kreft, O., Javier, A. M., Sukhorukov, G. B. & Parak, W. J. Polymer microcapsules as mobile local pH-sensors. J. Mater. Chem. 17, 4471–4476 (2007).
    CAS Google Scholar
  102. Gillies, E. R., Jonsson, T. B. & Frechet, J. M. J. Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers. J. Am. Chem. Soc. 126, 11936–11943 (2004).
    CAS Google Scholar
  103. Laugel, N. et al. Relationship between the growth regime of polyelectrolyte multilayers and the polyanion/polycation complexation enthalpy. J. Phys. Chem. B 110, 19443–19449 (2006).
    CAS Google Scholar
  104. Kakizawa, Y. & Kataoka, K. Block copolymer micelles for delivery of gene and related compounds. Adv. Drug Deliver. Rev. 54, 203–222 (2002).
    CAS Google Scholar
  105. Oishi, M., Hayashi, H., Michihiro, I. D. & Nagasaki, Y. Endosomal release and intracellular delivery of anticancer drugs using pH-sensitive PEGylated nanogels. J. Mater. Chem. 17, 3720–3725 (2007).
    CAS Google Scholar
  106. Lee, E. S., Kim, D., Youn, Y. S., Oh, K. T. & Bae, Y. H. A virus-mimetic nanogel vehicle. Angew. Chem. Int. Ed. 47, 2418–2421 (2008).
    CAS Google Scholar
  107. Zhulina, E. B., Singh, C. & Balazs, A. C. Forming patterned films with tethered diblock copolymers. Macromolecules 29, 6338–6348 (1996).
    CAS Google Scholar
  108. Roan, J. R. Soft nanopolyhedra as a route to multivalent nanoparticles. Phys. Rev. Lett. 96, 248301 (2006).
    Google Scholar
  109. Müller, M. Phase diagram of a mixed polymer brush. Phys. Rev. E 65, 30802 (2002).
    Google Scholar
  110. Wenning, L., Müller, M. & Binder, K. How does the pattern of grafting points influence the structure of one-component and mixed polymer brushes? Europhys. Lett. 71, 639–645 (2005).
    CAS Google Scholar
  111. Yin, Y. H. et al. A simulated annealing study of diblock copolymer brushes in selective solvents. Macromolecules 40, 5161–5170 (2007).
    CAS Google Scholar
  112. Matsen, M. W. The standard Gaussian model for block copolymer melts. J. Phys. Condens. Matter. 14, R21–R47 (2002).
    CAS Google Scholar
  113. Müller-Plathe, F. Coarse-graining in polymer simulation: From the atomistic to the mesoscopic scale and back. Chemphyschem 3, 754–769 (2002).
    Google Scholar
  114. Praprotnik, M., Delle Site, L. & Kremer, K. Multiscale simulation of soft matter: From scale bridging to adaptive resolution. Annu. Rev. Phys. Chem. 59, 545–571 (2008).
    CAS Google Scholar
  115. Merlitz, H., He, G. L., Sommer, J. U. & Wu, C. H. Reversibly switchable polymer brushes with hydrophobic/hydrophilic behaviour: A Langevin dynamics study. Macromolecules 42, 445–451 (2009).
    CAS Google Scholar
  116. Fang, F. & Szleifer, I. Controlled release of proteins from polymer-modified surfaces. Proc. Natl Acad. Sci. USA 103, 5769–5774 (2006).
    CAS Google Scholar
  117. Szleifer, I. & Carignano, M. A. Tethered polymer layers: phase transitions and reduction of protein adsorption. Macromol. Rapid Comm. 21, 423–448 (2000).
    CAS Google Scholar
  118. Israels, R., Leermakers, F. A. M. & Fleer, G. J. On the theory of grafted weak polyacids. Macromolecules 27, 3087–3093 (1994).
    CAS Google Scholar
  119. Ye, Y., McCoy, J. D. & Curro, J. G. Application of density functional theory to tethered polymer chains: Effect of intermolecular attractions. J. Chem. Phys. 119, 555–564 (2003).
    CAS Google Scholar
  120. Ren, C. L., Nap, R. J. & Szleifer, I. The role of hydrogen bonding in tethered polymer layers. J. Phys. Chem. B 112, 16238–16248 (2008).
    CAS Google Scholar
  121. Zhulina, E. B. & Leermakers, F. A. M. A self-consistent field analysis of the neurofilament brush with amino-acid resolution. Biophys. J. 93, 1421–1430 (2007).
    CAS Google Scholar
  122. Tagliazucchi, M., Calvo, E. J. & Szleifer, I. Molecular theory of chemically modified electrodes by redox polyelectrolytes under equilibrium conditions: Comparison with experiment. J. Phys. Chem. C 112, 458–471 (2008).
    CAS Google Scholar
  123. Tagliazucchi, M., Calvo, E. J. & Szleifer, I. Redox and acid base coupling in ultrathin polyelectrolyte films. Langmuir 24, 2869–2877 (2008).
    CAS Google Scholar
  124. Mendez, S., Curro, J. G., McCoy, J. D. & Lopez, G. P. Computational modeling of the temperature-induced structural changes of tethered poly(_N_-isopropylacrylamide) with self-consistent field theory. Macromolecules 38, 174–181 (2005).
    CAS Google Scholar
  125. Wang, Q. Internal structure and charge compensation of polyelectrolyte multilayers: a numerical study. Soft Matter 5, 413–424 (2009).
    CAS Google Scholar
  126. Pattanayek, S. K. & Pereira, G. G. Shape of micelles formed from strongly adsorbed grafted polymers in poor solvents. Macromol. Theor. Simul. 14, 347–357 (2005).
    CAS Google Scholar
  127. Netz, R. R. & Andelman, D. Neutral and charged polymers at interfaces. Phys. Rep. 380, 1–95 (2003).
    CAS Google Scholar
  128. Wang, J. & Müller, M. Microphase separation of diblock copolymer brushes in selective solvents: Single-chain-in-mean-field simulations and integral geometry analysis. Macromolecules 42, 2251–2264 (2009).
    CAS Google Scholar
  129. Groot, R. D. & Warren, P. B. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 107, 4423–4435 (1997).
    CAS Google Scholar
  130. Daoulas, K. Ch. & Müller, M. Comparison of simulations of lipid membranes with membranes of block copolymers. Adv. Polym. Sci. 224, 197–233 (2009).
    Google Scholar
  131. Santer, S. et al. Memory of surface patterns in mixed polymer brushes: Simulation and experiment. Langmuir 23, 279–285 (2007).
    CAS Google Scholar
  132. Santer, S., Kopyshev, A., Donges, J., Yang, H. K. & Rühe, J. Domain memory of mixed polymer brushes. Langmuir 22, 4660–4667 (2006).
    CAS Google Scholar
  133. Tam, T. K., Ornatska, M., Pita, M., Minko, S. & Katz, E. Polymer brush-modified electrode with switchable and tunable redox activity for bioelectronic applications. J. Phys. Chem. C 112, 8438–8445 (2008).
    CAS Google Scholar
  134. Motornov, M. et al. Integrated multifunctional nanosystem from command nanoparticles and enzymes. Small 5, 817–820 (2009).
    CAS Google Scholar
  135. Maye, M. M., Nykypanchuk, Cuisinier, M., van der Lelie, D. & Gang, O. Nature Mater. 8, 388–391 (2009).
    CAS Google Scholar
  136. Ghosh, B. & Urban, M. W. Self-repairing oxetane-substituted chitosan polyurethane networks. Science 323, 1458–1460 (2009).
    CAS Google Scholar

Download references