Maltodextrin-based imaging probes detect bacteria in vivo with high sensitivity and specificity (original) (raw)
References
Bettegowda, C. et al. Imaging bacterial infections with radiolabeled 1-(2′-deoxy-2′-fluoro-β-D-arabinofuranosyl)-5-iodouracil. Proc. Natl Acad. Sci. USA102, 1145–1150 (2005). ArticleCAS Google Scholar
Leevy, W. M. et al. Optical imaging of bacterial infection in living mice using a fluorescent near-infrared molecular probe. J. Am. Chem. Soc.128, 16476–16477 (2006). ArticleCAS Google Scholar
Smith, B. A. et al. Optical imaging of mammary and prostate tumors in living animals using a synthetic near infrared zinc(II)-dipicolylamine probe for anionic cell surfaces. J. Am. Chem. Soc.132, 67–69 (2010). ArticleCAS Google Scholar
Welling, M. M., Paulusma-Annema, A., Balter, H. S., Pauwels, E. K. & Nibbering, P. H. Technetium-99m labelled antimicrobial peptides discriminate between bacterial infections and sterile inflammations. Eur. J. Nucl. Med.27, 292–301 (2000). ArticleCAS Google Scholar
Mahfouz, T. et al. 18F-fluorodeoxyglucose positron emission tomography contributes to the diagnosis and management of infections in patients with multiple myeloma: A study of 165 infectious episodes. J. Clin. Oncol.23, 7857–7863 (2005). ArticleCAS Google Scholar
Leevy, W. M. et al. Noninvasive optical imaging of Staphylococcus aureus bacterial infection in living mice using a Bis-dipicolylamine-Zinc(II) affinity group conjugated to a near-infrared fluorophore. Bioconjug. Chem.19, 686–692 (2008). ArticleCAS Google Scholar
Rouzet, F. et al. Technetium 99m-labeled annexin V scintigraphy of platelet activation in vegetations of experimental endocarditis. Circulation117, 781–789 (2008). Article Google Scholar
Boos, W. & Shuman, H. Maltose/maltodextrin system of Escherichia coli: Transport, metabolism, and regulation. Microbiol. Mol. Biol. Rev.62, 204–229 (1998). CAS Google Scholar
Gopal, S. et al. Maltose and maltodextrin utilization by Listeria monocytogenes depend on an inducible ABC transporter which is repressed by glucose. PLoS ONE5, e10349 (2010). Article Google Scholar
Oldham, M. L., Khare, D., Quiocho, F. A., Davidson, A. L. & Chen, J. Crystal structure of a catalytic intermediate of the maltose transporter. Nature450, 515–521 (2007). ArticleCAS Google Scholar
Brass, J. M., Bauer, K., Ehmann, U. & Boos, W. Maltose-binding protein does not modulate the activity of maltoporin as a general porin in Escherichia coli. J. Bacteriol.161, 720–726 (1985). CAS Google Scholar
Lipsky, B. A., Itani, K. & Norden, C. Treating foot infections in diabetic patients: A randomized, multicenter, open-label trial of linezolid versus ampicillin-sulbactam/amoxicillin-clavulanate. Clin. Infect. Dis.38, 17–24 (2004). ArticleCAS Google Scholar
Reiber, G. E., Pecoraro, R. E. & Koepsell, T. D. Risk factors for amputation in patients with diabetes mellitus. A case-control study. Ann. Intern. Med.117, 97–105 (1992). ArticleCAS Google Scholar
Moore, E. H. Atypical mycobacterial infection in the lung: CT appearance. Radiology187, 777–782 (1993). ArticleCAS Google Scholar
Erasmus, J. J., McAdams, H. P., Farrell, M. A. & Patz, E. F. Jr Pulmonary nontuberculous mycobacterial infection: Radiologic manifestations. Radiographics19, 1487–1505 (1999). ArticleCAS Google Scholar
Dahl, M. K. & Manson, M. D. Interspecific reconstitution of maltose transport and chemotaxis in Escherichia coli with maltose-binding protein from various enteric bacteria. J. Bacteriol.164, 1057–1063 (1985). CAS Google Scholar
Reuss, R. et al. Intracellular delivery of carbohydrates into mammalian cells through swelling-activated pathways. J. Membr. Biol.200, 67–81 (2004). ArticleCAS Google Scholar
Line, B. R., Weber, P. B., Lukasiewicz, R. & Dansereau, R. N. Reduction of background activity through radiolabeling of antifibrin Fab′ with 99mTc-dextran. J. Nucl. Med.41, 1264–1270 (2000). CAS Google Scholar
Demko, Z. P. & Sharpless, K. B. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: Synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew. Chem. Int. Ed. Engl.41, 2113–2116 (2002). ArticleCAS Google Scholar
Tornoe, C. W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem.67, 3057–3064 (2002). ArticleCAS Google Scholar
Dippel, R. & Boos, W. The maltodextrin system of Escherichia coli: Metabolism and transport. J. Bacteriol.187, 8322–8331 (2005). ArticleCAS Google Scholar
Freundlieb, S., Ehmann, U. & Boos, W. Facilitated diffusion of p-nitrophenyl-alpha-D-maltohexaoside through the outer membrane of Escherichia coli. Characterization of LamB as a specific and saturable channel for maltooligosaccharides. J. Biol. Chem.263, 314–320 (1988). CAS Google Scholar
Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol.2, 2006.0008 (2006). Article Google Scholar
Reid, G. Biofilms in infectious disease and on medical devices. Int. J. Antimicrob. Agents11, 223–226 (1999). ArticleCAS Google Scholar
Author, A. N. Panel discussion on biofilms in urinary tract infection. Int. J. Antimicrob. Agents11, 237–239 (1999). Article Google Scholar
Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: From the natural environment to infectious diseases. Nature Rev. Microbiol.2, 95–108 (2004). ArticleCAS Google Scholar
Kolodkin-Gal, I. et al. D-amino acids trigger biofilm disassembly. Science328, 627–629 (2010). ArticleCAS Google Scholar
Dehoux, M. J., van Beneden, R. P., Fernandez-Celemin, L., Lause, P. L. & Thissen, J. P. Induction of MafBx and Murf ubiquitin ligase mRNAs in rat skeletal muscle after LPS injection. FEBS Lett.544, 214–217 (2003). ArticleCAS Google Scholar
Luo, G., Niesel, D. W., Shaban, R. A., Grimm, E. A. & Klimpel, G. R. Tumor necrosis factor alpha binding to bacteria: evidence for a high-affinity receptor and alteration of bacterial virulence properties. Infect. Immun.61, 830–835 (1993). CAS Google Scholar
Larson, T. J., Ludtke, D. N. & Bell, R. M. sn-Glycerol-3-phosphate auxotrophy of plsB strains of Escherichia coli: evidence that a second mutation, plsX, is required. J. Bacteriol.160, 711–717 (1984). CAS Google Scholar