Maltodextrin-based imaging probes detect bacteria in vivo with high sensitivity and specificity (original) (raw)

References

  1. Bettegowda, C. et al. Imaging bacterial infections with radiolabeled 1-(2′-deoxy-2′-fluoro-β-D-arabinofuranosyl)-5-iodouracil. Proc. Natl Acad. Sci. USA 102, 1145–1150 (2005).
    Article CAS Google Scholar
  2. Leevy, W. M. et al. Optical imaging of bacterial infection in living mice using a fluorescent near-infrared molecular probe. J. Am. Chem. Soc. 128, 16476–16477 (2006).
    Article CAS Google Scholar
  3. Smith, B. A. et al. Optical imaging of mammary and prostate tumors in living animals using a synthetic near infrared zinc(II)-dipicolylamine probe for anionic cell surfaces. J. Am. Chem. Soc. 132, 67–69 (2010).
    Article CAS Google Scholar
  4. Welling, M. M., Paulusma-Annema, A., Balter, H. S., Pauwels, E. K. & Nibbering, P. H. Technetium-99m labelled antimicrobial peptides discriminate between bacterial infections and sterile inflammations. Eur. J. Nucl. Med. 27, 292–301 (2000).
    Article CAS Google Scholar
  5. Mahfouz, T. et al. 18F-fluorodeoxyglucose positron emission tomography contributes to the diagnosis and management of infections in patients with multiple myeloma: A study of 165 infectious episodes. J. Clin. Oncol. 23, 7857–7863 (2005).
    Article CAS Google Scholar
  6. Leevy, W. M. et al. Noninvasive optical imaging of Staphylococcus aureus bacterial infection in living mice using a Bis-dipicolylamine-Zinc(II) affinity group conjugated to a near-infrared fluorophore. Bioconjug. Chem. 19, 686–692 (2008).
    Article CAS Google Scholar
  7. Rouzet, F. et al. Technetium 99m-labeled annexin V scintigraphy of platelet activation in vegetations of experimental endocarditis. Circulation 117, 781–789 (2008).
    Article Google Scholar
  8. Boos, W. & Shuman, H. Maltose/maltodextrin system of Escherichia coli: Transport, metabolism, and regulation. Microbiol. Mol. Biol. Rev. 62, 204–229 (1998).
    CAS Google Scholar
  9. Gopal, S. et al. Maltose and maltodextrin utilization by Listeria monocytogenes depend on an inducible ABC transporter which is repressed by glucose. PLoS ONE 5, e10349 (2010).
    Article Google Scholar
  10. Oldham, M. L., Khare, D., Quiocho, F. A., Davidson, A. L. & Chen, J. Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450, 515–521 (2007).
    Article CAS Google Scholar
  11. Brass, J. M., Bauer, K., Ehmann, U. & Boos, W. Maltose-binding protein does not modulate the activity of maltoporin as a general porin in Escherichia coli. J. Bacteriol. 161, 720–726 (1985).
    CAS Google Scholar
  12. Lipsky, B. A., Itani, K. & Norden, C. Treating foot infections in diabetic patients: A randomized, multicenter, open-label trial of linezolid versus ampicillin-sulbactam/amoxicillin-clavulanate. Clin. Infect. Dis. 38, 17–24 (2004).
    Article CAS Google Scholar
  13. Reiber, G. E., Pecoraro, R. E. & Koepsell, T. D. Risk factors for amputation in patients with diabetes mellitus. A case-control study. Ann. Intern. Med. 117, 97–105 (1992).
    Article CAS Google Scholar
  14. Moore, E. H. Atypical mycobacterial infection in the lung: CT appearance. Radiology 187, 777–782 (1993).
    Article CAS Google Scholar
  15. Erasmus, J. J., McAdams, H. P., Farrell, M. A. & Patz, E. F. Jr Pulmonary nontuberculous mycobacterial infection: Radiologic manifestations. Radiographics 19, 1487–1505 (1999).
    Article CAS Google Scholar
  16. Dahl, M. K. & Manson, M. D. Interspecific reconstitution of maltose transport and chemotaxis in Escherichia coli with maltose-binding protein from various enteric bacteria. J. Bacteriol. 164, 1057–1063 (1985).
    CAS Google Scholar
  17. Reuss, R. et al. Intracellular delivery of carbohydrates into mammalian cells through swelling-activated pathways. J. Membr. Biol. 200, 67–81 (2004).
    Article CAS Google Scholar
  18. Line, B. R., Weber, P. B., Lukasiewicz, R. & Dansereau, R. N. Reduction of background activity through radiolabeling of antifibrin Fab′ with 99mTc-dextran. J. Nucl. Med. 41, 1264–1270 (2000).
    CAS Google Scholar
  19. Demko, Z. P. & Sharpless, K. B. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: Synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew. Chem. Int. Ed. Engl. 41, 2113–2116 (2002).
    Article CAS Google Scholar
  20. Tornoe, C. W., Christensen, C. & Meldal, M. Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 67, 3057–3064 (2002).
    Article CAS Google Scholar
  21. Dippel, R. & Boos, W. The maltodextrin system of Escherichia coli: Metabolism and transport. J. Bacteriol. 187, 8322–8331 (2005).
    Article CAS Google Scholar
  22. Freundlieb, S., Ehmann, U. & Boos, W. Facilitated diffusion of p-nitrophenyl-alpha-D-maltohexaoside through the outer membrane of Escherichia coli. Characterization of LamB as a specific and saturable channel for maltooligosaccharides. J. Biol. Chem. 263, 314–320 (1988).
    CAS Google Scholar
  23. Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).
    Article Google Scholar
  24. Reid, G. Biofilms in infectious disease and on medical devices. Int. J. Antimicrob. Agents 11, 223–226 (1999).
    Article CAS Google Scholar
  25. Author, A. N. Panel discussion on biofilms in urinary tract infection. Int. J. Antimicrob. Agents 11, 237–239 (1999).
    Article Google Scholar
  26. Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: From the natural environment to infectious diseases. Nature Rev. Microbiol. 2, 95–108 (2004).
    Article CAS Google Scholar
  27. Kolodkin-Gal, I. et al. D-amino acids trigger biofilm disassembly. Science 328, 627–629 (2010).
    Article CAS Google Scholar
  28. Dehoux, M. J., van Beneden, R. P., Fernandez-Celemin, L., Lause, P. L. & Thissen, J. P. Induction of MafBx and Murf ubiquitin ligase mRNAs in rat skeletal muscle after LPS injection. FEBS Lett. 544, 214–217 (2003).
    Article CAS Google Scholar
  29. Luo, G., Niesel, D. W., Shaban, R. A., Grimm, E. A. & Klimpel, G. R. Tumor necrosis factor alpha binding to bacteria: evidence for a high-affinity receptor and alteration of bacterial virulence properties. Infect. Immun. 61, 830–835 (1993).
    CAS Google Scholar
  30. Larson, T. J., Ludtke, D. N. & Bell, R. M. sn-Glycerol-3-phosphate auxotrophy of plsB strains of Escherichia coli: evidence that a second mutation, plsX, is required. J. Bacteriol. 160, 711–717 (1984).
    CAS Google Scholar

Download references