Sequence heuristics to encode phase behaviour in intrinsically disordered protein polymers (original) (raw)
References
Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature483, 336–340 (2012). CAS Google Scholar
Kato, M. et al. Cell-free formation of RNA granules: Low complexity sequence domains form dynamic fibers within hydrogels. Cell149, 753–767 (2012). CAS Google Scholar
Weber, S. C. & Brangwynne, C. P. Getting RNA and protein in phase. Cell149, 1188–1191 (2012). CAS Google Scholar
Vekilov, P. G. Phase transitions of folded proteins. Soft Matter6, 5254–5272 (2010). CAS Google Scholar
Toretsky, J. A. & Wright, P. E. Assemblages: Functional units formed by cellular phase separation. J. Cell Biol.206, 579–588 (2014). CAS Google Scholar
Frey, S., Richter, R. P. & Görlich, D. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science314, 815–817 (2006). CAS Google Scholar
Roy, D., Brooks, W. L. & Sumerlin, B. S. New directions in thermoresponsive polymers. Chem. Soc. Rev.42, 7214–7243 (2013). CAS Google Scholar
Stuart, M. A. C. et al. Emerging applications of stimuli-responsive polymer materials. Nature Mater.9, 101–113 (2010). Google Scholar
McDaniel, J. R. et al. Self-assembly of thermally responsive nanoparticles of a genetically encoded peptide polymer by drug conjugation. Angew. Chem. Int. Ed.52, 1683–1687 (2013). CAS Google Scholar
MacKay, J. A. et al. Self-assembling chimeric polypeptide–doxorubicin conjugate nanoparticles that abolish tumours after a single injection. Nature Mater.8, 993–999 (2009). Google Scholar
Liu, W. et al. Brachytherapy using injectable seeds that are self-assembled from genetically encoded polypeptides in situ. Cancer Res.72, 5956–5965 (2012). CAS Google Scholar
Nishida, K. et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. New Eng. J. Med.351, 1187–1196 (2004). CAS Google Scholar
Caves, J. M. et al. Elastin-like protein matrix reinforced with collagen microfibers for soft tissue repair. Biomaterials32, 5371–5379 (2011). CAS Google Scholar
Koria, P. et al. Self-assembling elastin-like peptides growth factor chimeric nanoparticles for the treatment of chronic wounds. Proc. Natl Acad. Sci. USA108, 1034–1039 (2011). CAS Google Scholar
Meyer, D. E. & Chilkoti, A. Purification of recombinant proteins by fusion with thermally-responsive polypeptides. Nature Biotechnol.17, 1112–1115 (1999). CAS Google Scholar
Bellucci, J. J., Amiram, M., Bhattacharyya, J., McCafferty, D. & Chilkoti, A. Three-in-one chromatography-free purification, tag removal, and site-specific modification of recombinant fusion proteins using sortase A and elastin-like polypeptides. Angew. Chem. Int. Ed.52, 3703–3708 (2013). CAS Google Scholar
Stayton, P. S. et al. Control of protein–ligand recognition using a stimuli-responsive polymer. Nature378, 472–474 (1995). CAS Google Scholar
Dill, K. A. & MacCallum, J. L. The protein-folding problem, 50 years on. Science338, 1042–1046 (2012). CAS Google Scholar
Habchi, J., Tompa, P., Longhi, S. & Uversky, V. N. Introducing protein intrinsic disorder. Chem. Rev.114, 6561–6588 (2014). CAS Google Scholar
Li, N. K., Quiroz, F. G., Hall, C. K., Chilkoti, A. & Yingling, Y. G. Molecular description of the LCST behaviour of an elastin-like polypeptide. Biomacromolecules15, 3522–3530 (2014). CAS Google Scholar
Muiznieks, L. D. & Keeley, F. W. Proline periodicity modulates the self-assembly properties of elastin-like polypeptides. J. Biol. Chem.285, 39779–39789 (2010). CAS Google Scholar
Dutta, N. K. et al. A genetically engineered protein responsive to multiple stimuli. Angew. Chem. Int. Ed.50, 4428–4431 (2011). CAS Google Scholar
Rauscher, S., Baud, S., Miao, M., Keeley, F. W. & Pomès, R. Proline and glycine control protein self-organization into elastomeric or amyloid fibrils. Structure14, 1667–1676 (2006). CAS Google Scholar
De Las Heras Alarcon, C., Pennadam, S. & Alexander, C. Stimuli responsive polymers for biomedical applications. Chem. Soc. Rev.34, 276–285 (2005). Google Scholar
Amiram, M., Quiroz, F. G., Callahan, D. J. & Chilkoti, A. A highly parallel method for synthesizing DNA repeats enables the discovery of ‘smart’ protein polymers. Nature Mater.10, 141–148 (2011). CAS Google Scholar
Balu, R. et al. An16-resilin: An advanced multi-stimuli-responsive resilin-mimetic protein polymer. Acta Biomater.10, 4768–4777 (2014). CAS Google Scholar
Urry, D. W. et al. Hydrophobicity scale for proteins based on inverse temperature transitions. Biopolymers32, 1243–1250 (1992). CAS Google Scholar
Das, R. K. & Pappu, R. V. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc. Natl Acad. Sci. USA110, 13392–13397 (2013). CAS Google Scholar
Yokoi, H., Kinoshita, T. & Zhang, S. Dynamic reassembly of peptide RADA16 nanofiber scaffold. Proc. Natl Acad. Sci. USA102, 8414–8419 (2005). CAS Google Scholar
Müller-Späth, S. et al. Charge interactions can dominate the dimensions of intrinsically disordered proteins. Proc. Natl Acad. Sci. USA107, 14609–14614 (2010). Google Scholar
Möglich, A., Joder, K. & Kiefhaber, T. End-to-end distance distributions and intrachain diffusion constants in unfolded polypeptide chains indicate intramolecular hydrogen bond formation. Proc. Natl Acad. Sci. USA103, 12394–12399 (2006). Google Scholar
Meyer, D. E. & Chilkoti, A. Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: Examples from the elastin-like polypeptide system. Biomacromolecules3, 357–367 (2002). CAS Google Scholar
Seuring, J. & Agarwal, S. First example of a universal and cost-effective approach: Polymers with tunable upper critical solution temperature in water and electrolyte solution. Macromolecules45, 3910–3918 (2012). CAS Google Scholar
Shimada, N. et al. Ureido-derivatized polymers based on both poly (allylurea) and poly (L-citrulline) exhibit UCST-type phase transition behaviour under physiologically relevant conditions. Biomacromolecules12, 3418–3422 (2011). CAS Google Scholar
Seuring, J. & Agarwal, S. Polymers with upper critical solution temperature in aqueous solution: Unexpected properties from known building blocks. ACS Macro Lett.2, 597–600 (2013). CAS Google Scholar
Seuring, J. & Agarwal, S. Polymers with upper critical solution temperature in aqueous solution. Macromol. Rapid Commun.33, 1898–1920 (2012). CAS Google Scholar
Azzaroni, O., Brown, A. A. & Huck, W. T. UCST wetting transitions of polyzwitterionic brushes driven by self-association. Angew. Chem.118, 1802–1806 (2006). Google Scholar
Lowe, A. B. & McCormick, C. L. Synthesis and solution properties of zwitterionic polymers. Chem. Rev.102, 4177–4190 (2002). CAS Google Scholar
Mason, P., Neilson, G., Dempsey, C., Barnes, A. & Cruickshank, J. The hydration structure of guanidinium and thiocyanate ions: Implications for protein stability in aqueous solution. Proc. Natl Acad. Sci. USA100, 4557–4561 (2003). CAS Google Scholar
Mahadevi, A. S. & Sastry, G. N. Cation-π interaction: Its role and relevance in chemistry, biology, and material science. Chem. Rev.113, 2100–2138 (2013). CAS Google Scholar
Kao, W. J., Lee, D., Schense, J. C. & Hubbell, J. A. Fibronectin modulates macrophage adhesion and FBGC formation: The role of RGD, PHSRN, and PRRARV domains. J. Biomed. Mater. Res.55, 79–88 (2001). CAS Google Scholar
Iwamoto, Y. et al. YIGSR, a synthetic laminin pentapeptide, inhibits experimental metastasis formation. Science238, 1132–1134 (1987). CAS Google Scholar
Pierschbacher, M. D. & Ruoslahti, E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature309, 30–33 (1983). Google Scholar
Lee, B. W. et al. Strongly binding cell-adhesive polypeptides of programmable valencies. Angew. Chem. Int. Ed.49, 1971–1975 (2010). CAS Google Scholar
van der Lee, R. et al. Classification of intrinsically disordered regions and proteins. Chem. Rev.114, 6589–6631 (2014). CAS Google Scholar
Brassart, B. et al. Conformational dependence of collagenase (matrix metalloproteinase-1) up-regulation by elastin peptides in cultured fibroblasts. J. Biol. Chem.276, 5222–5227 (2001). CAS Google Scholar
Dreher, M. R. et al. Temperature triggered self-assembly of polypeptides into multivalent spherical micelles. J. Am. Chem. Soc.130, 687–694 (2008). CAS Google Scholar
Callahan, D. J. et al. Triple stimulus-responsive polypeptide nanoparticles that enhance intratumoral spatial distribution. Nano Lett.12, 2165–2170 (2012). CAS Google Scholar
Crick, S. L., Ruff, K. M., Garai, K., Frieden, C. & Pappu, R. V. Unmasking the roles of N-and C-terminal flanking sequences from exon 1 of huntingtin as modulators of polyglutamine aggregation. Proc. Natl Acad. Sci. USA110, 20075–20080 (2013). CAS Google Scholar
Bates, F. S. et al. Multiblock polymers: Panacea or Pandora’s box? Science336, 434–440 (2012). CAS Google Scholar
Hassouneh, W., Zhulina, E. B., Chilkoti, A. & Rubinstein, M. Elastin-like polypeptide diblock copolymers self-assemble into weak micelles. Macromolecules48, 4183–4195 (2015). CAS Google Scholar
Tong, R., Chiang, H. H. & Kohane, D. S. Photoswitchable nanoparticles for in vivo cancer chemotherapy. Proc. Natl Acad. Sci. USA110, 19048–19053 (2013). CAS Google Scholar
Wong, C. et al. Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc. Natl Acad. Sci. USA108, 2426–2431 (2011). CAS Google Scholar
Clark, J. I. Self-assembly of protein aggregates in ageing disorders: The lens and cataract model. Phil. Trans. R. Soc. B368, 20120104 (2013). Google Scholar
Smith, F. J. et al. Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nature Genet.38, 337–342 (2006). CAS Google Scholar
Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol.157, 105–132 (1982). CAS Google Scholar
McDaniel, J. R., MacKay, J. A., Quiroz, F. G. & Chilkoti, A. Recursive directional ligation by plasmid reconstruction allows rapid and seamless cloning of oligomeric genes. Biomacromolecules11, 944–952 (2010). CAS Google Scholar