Wiltschko, R. & Wiltschko, W. Magnetic Orientation in Animals (Springer, 1995). Google Scholar
Wiltschko, W. & Wiltschko, R. Magnetic orientation and magnetoreception in birds and other animals. J. Comp. Physiol.191, 675–693 (2005). Google Scholar
Zhan, S., Merlin, C., Boore, J. L. & Reppert, S. M. The monarch butterfly genome yields insights into long-distance migration. Cell147, 1171–1185 (2011). ArticleCAS Google Scholar
Quinn, T. Evidence for celestial and magnetic compass orientation in lake migrating sockeye salmon fry. J. Comp. Physiol.137, 243–248 (1980). Google Scholar
Cain, S. D., Boles, L. C., Wang, J. H. & Lohmann, K. J. Magnetic orientation and navigation in marine turtles, lobsters, and molluscs: Concepts and conundrums. Integr. Comp. Biol.45, 539–546 (2005). Google Scholar
Boles, L. C. & Lohmann, K. J. True navigation and magnetic maps in spiny lobsters. Nature421, 60–63 (2003). CAS Google Scholar
Wang, Y., Pan, Y., Parsons, S., Walker, M. & Zhang, S. Bats respond to polarity of a magnetic field. Proc. Biol. Sci.274, 2901–2905 (2007). Google Scholar
Nemec, P., Altmann, J., Marhold, S., Burda, H. & Oelschlager, H. H. Neuroanatomy of magnetoreception: The superior colliculus involved in magnetic orientation in a mammal. Science294, 366–368 (2001). CAS Google Scholar
Marhold, S., Wiltschko, W. & Burda, H. A magnetic polarity compass for direction finding in a subterranean mammal. Naturwissenschaften84, 421–423 (1997). CAS Google Scholar
O’ Neill, P. Magnetoreception and baroreception in birds. Dev. Growth Differ.55, 188–197 (2013). Google Scholar
Pavlova, G. A., Glantz, R. M. & Dennis Willows, A. O. Responses to magnetic stimuli recorded in peripheral nerves in the marine nudibranch mollusk Tritonia diomedea. J. Comp. Physiol.197, 979–986 (2011). Google Scholar
Jacklyn, P. M. & Munro, U. Evidence for the use of magnetic cues in mound construction by the termite Amitermes meridionalis (Isoptera : Termitinae). Aust. J. Zool.50, 357–368 (2002). Google Scholar
Westby, G. W. & Partridge, K. J. Human homing: Still no evidence despite geomagnetic controls. J. Exp. Biol.120, 325–331 (1986). CAS Google Scholar
Baker, R. R. Human Navigation and the Sixth Sense (Hodder and Stoughton, 1981). Google Scholar
Thoss, F., Bartsch, B., Fritzsche, B., Tellschaft, D. & Thoss, M. The magnetic field sensitivity of the human visual system shows resonance and compass characteristic. J. Comp. Physiol.186, 1007–1010 (2000). CAS Google Scholar
Johnsen, S. & Lohmann, K. J. Magnetoreception in animals. Phys. Today61, 29–35 (March, 2008). CAS Google Scholar
Schulten, K. & Weller, A. Exploring fast electron transfer processes by magnetic fields. Biophys. J.24, 295–305 (1978). CAS Google Scholar
Schulten, K. & Windemuth, A. in Biophysical Effects of Steady Magnetic Fields (eds Maret, G., Kiepenheuen, J. & Boccara, N.) 99–106 (Springer, 1986). Google Scholar
Mohseni, M., Omar, Y., Engel, G. S. & Plenio, M. B. in Quantum Effects in Biology (eds Solov’yov, I. S., Ritz, T., Schulten, K. & Hore, P. J.) Ch. 10, 218–236 (Cambridge Univ. Press, 2014). Google Scholar
Ritz, T., Adem, S. & Schulten, K. A model for photoreceptor-based magnetoreception in birds. Biophys. J.78, 707–718 (2000). CAS Google Scholar
Solov’yov, I. A. & Schulten, K. Magnetoreception through cryptochrome may involve superoxide. Biophys. J.96, 4804–4813 (2009). Google Scholar
Solov’yov, I. A., Mouritsen, H. & Schulten, K. Acuity of a cryptochrome and vision-based magnetoreception system in birds. Biophys. J.99, 40–49 (2010). Google Scholar
Cai, J. & Plenio, M. B. Chemical compass model for avian magnetoreception as a quantum coherent device. Phys. Rev. Lett.111, 230503 (2013). Google Scholar
Rodgers, C. T. & Hore, P. J. Chemical magnetoreception in birds: The radical pair mechanism. Proc. Natl Acad. Sci. USA106, 353–360 (2009). CAS Google Scholar
Maeda, K. et al. Chemical compass model of avian magnetoreception. Nature453, 387–390 (2008). CAS Google Scholar
Moller, A., Sagasser, S., Wiltschko, W. & Schierwater, B. Retinal cryptochrome in a migratory passerine bird: A possible transducer for the avian magnetic compass. Naturwissenschaften91, 585–588 (2004). Google Scholar
Mouritsen, H. & Ritz, T. Magnetoreception and its use in bird navigation. Curr. Opin. Neurobiol.15, 406–414 (2005). CAS Google Scholar
Ritz, T., Thalau, P., Phillips, J. B., Wiltschko, R. & Wiltschko, W. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature429, 177–180 (2004). CAS Google Scholar
Mouritsen, H. & Hore, P. J. The magnetic retina: Light-dependent and trigeminal magnetoreception in migratory birds. Curr. Opin. Neurobiol.22, 343–352 (2012). CAS Google Scholar
Gegear, R. J., Casselman, A., Waddell, S. & Reppert, S. M. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature454, 1014–1018 (2008). CAS Google Scholar
Gegear, R. J., Foley, L. E., Casselman, A. & Reppert, S. M. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature463, 804–807 (2010). CAS Google Scholar
Fleissner, G. et al. Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. J. Comp. Neurol.458, 350–360 (2003). CAS Google Scholar
Fleissner, G., Stahl, B., Thalau, P., Falkenberg, G. & Fleissner, G. A novel concept of Fe-mineral-based magnetoreception: Histological and physicochemical data from the upper beak of homing pigeons. Naturwissenschaften94, 631–642 (2007). CAS Google Scholar
Falkenberg, G. et al. Avian magnetoreception: Elaborate iron mineral containing dendrites in the upper beak seem to be a common feature of birds. PLoS ONE5, e9231 (2010). Google Scholar
Hanzlik, M. et al. Superparamagnetic magnetite in the upper beak tissue of homing pigeons. Biometals13, 325–331 (2000). CAS Google Scholar
Kirschvink, J. L. & Gould, J. L. Biogenic magnetite as a basis for magnetic field detection in animals. Biosystems13, 181–201 (1981). CAS Google Scholar
Eder, S. H. et al. Magnetic characterization of isolated candidate vertebrate magnetoreceptor cells. Proc. Natl Acad. Sci. USA109, 12022–12027 (2012). CAS Google Scholar
Cadiou, H. & McNaughton, P. A. Avian magnetite-based magnetoreception: A physiologist’s perspective. J. R. Soc. Interface7, S193-205 (2010). Google Scholar
Mann, S., Sparks, N. H., Walker, M. M. & Kirschvink, J. L. Ultrastructure, morphology and organization of biogenic magnetite from sockeye salmon, Oncorhynchus nerka: Implications for magnetoreception. J. Exp. Biol.140, 35–49 (1988). CAS Google Scholar
Treiber, C. D. et al. Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons. Nature484, 367–370 (2012). CAS Google Scholar
Lohmann, K. J., Lohmann, C. M. & Putman, N. F. Magnetic maps in animals: Nature’s GPS. J. Exp. Biol.210, 3697–3705 (2007). Google Scholar
Yoshii, T., Todo, T., Wulbeck, C., Stanewsky, R. & Helfrich-Forster, C. Cryptochrome is present in the compound eyes and a subset of _Drosophila_’s clock neurons. J. Comp. Neurol.508, 952–966 (2008). CAS Google Scholar
Ceriani, M. F. et al. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science285, 553–556 (1999). CAS Google Scholar
Mandilaras, K. & Missirlis, F. Genes for iron metabolism influence circadian rhythms in Drosophila melanogaster. Metallomics4, 928–936 (2012). CAS Google Scholar
Chaves, I. et al. The cryptochromes: Blue light photoreceptors in plants and animals. Annu. Rev. Plant Biol.62, 335–364 (2011). CAS Google Scholar
Zhu, H. et al. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation. PLoS Biol.6, e4 (2008). Google Scholar
Yoshii, T., Ahmad, M. & Helfrich-Forster, C. Cryptochrome mediates light-dependent magnetosensitivity of _Drosophila_’s circadian clock. PLoS Biol.7, e1000086 (2009). Google Scholar
Solov’yov, I. A. & Greiner, W. Micromagnetic insight into a magnetoreceptor in birds: Existence of magnetic field amplifiers in the beak. Phys. Rev. E80, 041919 (2009). Google Scholar
Bilder, P. W., Ding, H. & Newcomer, M. E. Crystal structure of the ancient, Fe–S scaffold IscA reveals a novel protein fold. Biochemistry43, 133–139 (2004). CAS Google Scholar
Zoltowski, B. D. et al. Structure of full-length Drosophila cryptochrome. Nature480, 396–399 (2011). CAS Google Scholar
Watari, R. et al. Light-dependent structural change of chicken retinal Cryptochrome4. J. Biol. Chem.287, 42634–42641 (2012). CAS Google Scholar
Mouritsen, H. et al. Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. Proc. Natl Acad. Sci. USA101, 14294–14299 (2004). CAS Google Scholar
Schrödinger, E. What Is Life? with Mind and Matter and Autobiographical Sketches (Cambridge Univ. Press, 1967). Google Scholar
Jia, C. J. et al. Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. J. Am. Chem. Soc.130, 16968–16977 (2008). CAS Google Scholar
Cao, C. et al. Magnetic characterization of noninteracting, randomly oriented, nanometer-scale ferrimagnetic particles. J. Geophys. Res.115, B07103 (2010). Google Scholar
Ashburner, M. et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nature Genet.25, 25–29 (2000). CAS Google Scholar
Chintapalli, V. R., Wang, J. & Dow, J. A. Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nature Genet.39, 715–720 (2007). CAS Google Scholar
Schultz, J., Milpetz, F., Bork, P. & Ponting, C. P. SMART, a simple modular architecture research tool: Identification of signaling domains. Proc. Natl Acad. Sci. USA95, 5857–5864 (1998). CAS Google Scholar
Nishida, N. et al. Activation of leukocyte b2 integrins by conversion from bent to extended conformations. Immunity25, 583–594 (2006). CAS Google Scholar
Steven, J., Ludtke, P. R. B. & Chiu, W. EMAN: Semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol.128, 82–97 (1999). Google Scholar
van Heel, M., Harauz, G., Orlova, E. V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol.116, 17–24 (1996). CAS Google Scholar
Saxton, W. O. & Baumeister, W. The correlation averaging of a regularly arranged bacterial cell envelope protein. J. Microsc.127, 127–138 (1982). CAS Google Scholar
Kelley, L. A. & Sternberg, M. J. Protein structure prediction on the Web: A case study using the Phyre server. Nature Protoc.4, 363–371 (2009). CAS Google Scholar
Fan, K. et al. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nature Nanotech.7, 459–464 (2012). CAS Google Scholar
Galvez, N. et al. Comparative structural and chemical studies of ferritin cores with gradual removal of their iron contents. J. Am. Chem. Soc.130, 8062–8068 (2008). CAS Google Scholar