A magnetic protein biocompass (original) (raw)

References

  1. Wiltschko, R. & Wiltschko, W. Magnetic Orientation in Animals (Springer, 1995).
    Google Scholar
  2. Wiltschko, W. & Wiltschko, R. Magnetic orientation and magnetoreception in birds and other animals. J. Comp. Physiol. 191, 675–693 (2005).
    Google Scholar
  3. Zhan, S., Merlin, C., Boore, J. L. & Reppert, S. M. The monarch butterfly genome yields insights into long-distance migration. Cell 147, 1171–1185 (2011).
    Article CAS Google Scholar
  4. Quinn, T. Evidence for celestial and magnetic compass orientation in lake migrating sockeye salmon fry. J. Comp. Physiol. 137, 243–248 (1980).
    Google Scholar
  5. Cain, S. D., Boles, L. C., Wang, J. H. & Lohmann, K. J. Magnetic orientation and navigation in marine turtles, lobsters, and molluscs: Concepts and conundrums. Integr. Comp. Biol. 45, 539–546 (2005).
    Google Scholar
  6. Boles, L. C. & Lohmann, K. J. True navigation and magnetic maps in spiny lobsters. Nature 421, 60–63 (2003).
    CAS Google Scholar
  7. Wang, Y., Pan, Y., Parsons, S., Walker, M. & Zhang, S. Bats respond to polarity of a magnetic field. Proc. Biol. Sci. 274, 2901–2905 (2007).
    Google Scholar
  8. Nemec, P., Altmann, J., Marhold, S., Burda, H. & Oelschlager, H. H. Neuroanatomy of magnetoreception: The superior colliculus involved in magnetic orientation in a mammal. Science 294, 366–368 (2001).
    CAS Google Scholar
  9. Marhold, S., Wiltschko, W. & Burda, H. A magnetic polarity compass for direction finding in a subterranean mammal. Naturwissenschaften 84, 421–423 (1997).
    CAS Google Scholar
  10. O’ Neill, P. Magnetoreception and baroreception in birds. Dev. Growth Differ. 55, 188–197 (2013).
    Google Scholar
  11. Pavlova, G. A., Glantz, R. M. & Dennis Willows, A. O. Responses to magnetic stimuli recorded in peripheral nerves in the marine nudibranch mollusk Tritonia diomedea. J. Comp. Physiol. 197, 979–986 (2011).
    Google Scholar
  12. Jacklyn, P. M. & Munro, U. Evidence for the use of magnetic cues in mound construction by the termite Amitermes meridionalis (Isoptera : Termitinae). Aust. J. Zool. 50, 357–368 (2002).
    Google Scholar
  13. Westby, G. W. & Partridge, K. J. Human homing: Still no evidence despite geomagnetic controls. J. Exp. Biol. 120, 325–331 (1986).
    CAS Google Scholar
  14. Baker, R. R. Human Navigation and the Sixth Sense (Hodder and Stoughton, 1981).
    Google Scholar
  15. Thoss, F., Bartsch, B., Fritzsche, B., Tellschaft, D. & Thoss, M. The magnetic field sensitivity of the human visual system shows resonance and compass characteristic. J. Comp. Physiol. 186, 1007–1010 (2000).
    CAS Google Scholar
  16. Johnsen, S. & Lohmann, K. J. Magnetoreception in animals. Phys. Today 61, 29–35 (March, 2008).
    CAS Google Scholar
  17. Schulten, K. & Weller, A. Exploring fast electron transfer processes by magnetic fields. Biophys. J. 24, 295–305 (1978).
    CAS Google Scholar
  18. Schulten, K. & Windemuth, A. in Biophysical Effects of Steady Magnetic Fields (eds Maret, G., Kiepenheuen, J. & Boccara, N.) 99–106 (Springer, 1986).
    Google Scholar
  19. Mohseni, M., Omar, Y., Engel, G. S. & Plenio, M. B. in Quantum Effects in Biology (eds Solov’yov, I. S., Ritz, T., Schulten, K. & Hore, P. J.) Ch. 10, 218–236 (Cambridge Univ. Press, 2014).
    Google Scholar
  20. Ritz, T., Adem, S. & Schulten, K. A model for photoreceptor-based magnetoreception in birds. Biophys. J. 78, 707–718 (2000).
    CAS Google Scholar
  21. Solov’yov, I. A. & Schulten, K. Magnetoreception through cryptochrome may involve superoxide. Biophys. J. 96, 4804–4813 (2009).
    Google Scholar
  22. Solov’yov, I. A., Mouritsen, H. & Schulten, K. Acuity of a cryptochrome and vision-based magnetoreception system in birds. Biophys. J. 99, 40–49 (2010).
    Google Scholar
  23. Cai, J. & Plenio, M. B. Chemical compass model for avian magnetoreception as a quantum coherent device. Phys. Rev. Lett. 111, 230503 (2013).
    Google Scholar
  24. Rodgers, C. T. & Hore, P. J. Chemical magnetoreception in birds: The radical pair mechanism. Proc. Natl Acad. Sci. USA 106, 353–360 (2009).
    CAS Google Scholar
  25. Maeda, K. et al. Chemical compass model of avian magnetoreception. Nature 453, 387–390 (2008).
    CAS Google Scholar
  26. Moller, A., Sagasser, S., Wiltschko, W. & Schierwater, B. Retinal cryptochrome in a migratory passerine bird: A possible transducer for the avian magnetic compass. Naturwissenschaften 91, 585–588 (2004).
    Google Scholar
  27. Mouritsen, H. & Ritz, T. Magnetoreception and its use in bird navigation. Curr. Opin. Neurobiol. 15, 406–414 (2005).
    CAS Google Scholar
  28. Ritz, T., Thalau, P., Phillips, J. B., Wiltschko, R. & Wiltschko, W. Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429, 177–180 (2004).
    CAS Google Scholar
  29. Mouritsen, H. & Hore, P. J. The magnetic retina: Light-dependent and trigeminal magnetoreception in migratory birds. Curr. Opin. Neurobiol. 22, 343–352 (2012).
    CAS Google Scholar
  30. Gegear, R. J., Casselman, A., Waddell, S. & Reppert, S. M. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 454, 1014–1018 (2008).
    CAS Google Scholar
  31. Gegear, R. J., Foley, L. E., Casselman, A. & Reppert, S. M. Animal cryptochromes mediate magnetoreception by an unconventional photochemical mechanism. Nature 463, 804–807 (2010).
    CAS Google Scholar
  32. Fleissner, G. et al. Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. J. Comp. Neurol. 458, 350–360 (2003).
    CAS Google Scholar
  33. Fleissner, G., Stahl, B., Thalau, P., Falkenberg, G. & Fleissner, G. A novel concept of Fe-mineral-based magnetoreception: Histological and physicochemical data from the upper beak of homing pigeons. Naturwissenschaften 94, 631–642 (2007).
    CAS Google Scholar
  34. Falkenberg, G. et al. Avian magnetoreception: Elaborate iron mineral containing dendrites in the upper beak seem to be a common feature of birds. PLoS ONE 5, e9231 (2010).
    Google Scholar
  35. Hanzlik, M. et al. Superparamagnetic magnetite in the upper beak tissue of homing pigeons. Biometals 13, 325–331 (2000).
    CAS Google Scholar
  36. Kirschvink, J. L. & Gould, J. L. Biogenic magnetite as a basis for magnetic field detection in animals. Biosystems 13, 181–201 (1981).
    CAS Google Scholar
  37. Eder, S. H. et al. Magnetic characterization of isolated candidate vertebrate magnetoreceptor cells. Proc. Natl Acad. Sci. USA 109, 12022–12027 (2012).
    CAS Google Scholar
  38. Cadiou, H. & McNaughton, P. A. Avian magnetite-based magnetoreception: A physiologist’s perspective. J. R. Soc. Interface 7, S193-205 (2010).
    Google Scholar
  39. Mann, S., Sparks, N. H., Walker, M. M. & Kirschvink, J. L. Ultrastructure, morphology and organization of biogenic magnetite from sockeye salmon, Oncorhynchus nerka: Implications for magnetoreception. J. Exp. Biol. 140, 35–49 (1988).
    CAS Google Scholar
  40. Treiber, C. D. et al. Clusters of iron-rich cells in the upper beak of pigeons are macrophages not magnetosensitive neurons. Nature 484, 367–370 (2012).
    CAS Google Scholar
  41. Lohmann, K. J., Lohmann, C. M. & Putman, N. F. Magnetic maps in animals: Nature’s GPS. J. Exp. Biol. 210, 3697–3705 (2007).
    Google Scholar
  42. Yoshii, T., Todo, T., Wulbeck, C., Stanewsky, R. & Helfrich-Forster, C. Cryptochrome is present in the compound eyes and a subset of _Drosophila_’s clock neurons. J. Comp. Neurol. 508, 952–966 (2008).
    CAS Google Scholar
  43. Ceriani, M. F. et al. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science 285, 553–556 (1999).
    CAS Google Scholar
  44. Mandilaras, K. & Missirlis, F. Genes for iron metabolism influence circadian rhythms in Drosophila melanogaster. Metallomics 4, 928–936 (2012).
    CAS Google Scholar
  45. Chaves, I. et al. The cryptochromes: Blue light photoreceptors in plants and animals. Annu. Rev. Plant Biol. 62, 335–364 (2011).
    CAS Google Scholar
  46. Zhu, H. et al. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation. PLoS Biol. 6, e4 (2008).
    Google Scholar
  47. Yoshii, T., Ahmad, M. & Helfrich-Forster, C. Cryptochrome mediates light-dependent magnetosensitivity of _Drosophila_’s circadian clock. PLoS Biol. 7, e1000086 (2009).
    Google Scholar
  48. Solov’yov, I. A. & Greiner, W. Micromagnetic insight into a magnetoreceptor in birds: Existence of magnetic field amplifiers in the beak. Phys. Rev. E 80, 041919 (2009).
    Google Scholar
  49. Bilder, P. W., Ding, H. & Newcomer, M. E. Crystal structure of the ancient, Fe–S scaffold IscA reveals a novel protein fold. Biochemistry 43, 133–139 (2004).
    CAS Google Scholar
  50. Zoltowski, B. D. et al. Structure of full-length Drosophila cryptochrome. Nature 480, 396–399 (2011).
    CAS Google Scholar
  51. Watari, R. et al. Light-dependent structural change of chicken retinal Cryptochrome4. J. Biol. Chem. 287, 42634–42641 (2012).
    CAS Google Scholar
  52. Mouritsen, H. et al. Cryptochromes and neuronal-activity markers colocalize in the retina of migratory birds during magnetic orientation. Proc. Natl Acad. Sci. USA 101, 14294–14299 (2004).
    CAS Google Scholar
  53. Schrödinger, E. What Is Life? with Mind and Matter and Autobiographical Sketches (Cambridge Univ. Press, 1967).
    Google Scholar
  54. Jia, C. J. et al. Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. J. Am. Chem. Soc. 130, 16968–16977 (2008).
    CAS Google Scholar
  55. Cao, C. et al. Magnetic characterization of noninteracting, randomly oriented, nanometer-scale ferrimagnetic particles. J. Geophys. Res. 115, B07103 (2010).
    Google Scholar
  56. Ashburner, M. et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nature Genet. 25, 25–29 (2000).
    CAS Google Scholar
  57. Chintapalli, V. R., Wang, J. & Dow, J. A. Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nature Genet. 39, 715–720 (2007).
    CAS Google Scholar
  58. Schultz, J., Milpetz, F., Bork, P. & Ponting, C. P. SMART, a simple modular architecture research tool: Identification of signaling domains. Proc. Natl Acad. Sci. USA 95, 5857–5864 (1998).
    CAS Google Scholar
  59. Nishida, N. et al. Activation of leukocyte b2 integrins by conversion from bent to extended conformations. Immunity 25, 583–594 (2006).
    CAS Google Scholar
  60. Steven, J., Ludtke, P. R. B. & Chiu, W. EMAN: Semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999).
    Google Scholar
  61. van Heel, M., Harauz, G., Orlova, E. V., Schmidt, R. & Schatz, M. A new generation of the IMAGIC image processing system. J. Struct. Biol. 116, 17–24 (1996).
    CAS Google Scholar
  62. Saxton, W. O. & Baumeister, W. The correlation averaging of a regularly arranged bacterial cell envelope protein. J. Microsc. 127, 127–138 (1982).
    CAS Google Scholar
  63. Kelley, L. A. & Sternberg, M. J. Protein structure prediction on the Web: A case study using the Phyre server. Nature Protoc. 4, 363–371 (2009).
    CAS Google Scholar
  64. Fan, K. et al. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nature Nanotech. 7, 459–464 (2012).
    CAS Google Scholar
  65. Galvez, N. et al. Comparative structural and chemical studies of ferritin cores with gradual removal of their iron contents. J. Am. Chem. Soc. 130, 8062–8068 (2008).
    CAS Google Scholar

Download references