Mechanistic fracture criteria for the failure of human cortical bone (original) (raw)
References
Ritchie, R.O., Knott, J.F. & Rice, J.R. On the relationship between critical tensile stress and fracture toughness in mild steel. J. Mech. Phys. Solids21, 395–410 (1973). ArticleCAS Google Scholar
Ritchie, R.O., Server, W.L. & Wullaert, R.A. Critical fracture stress and fracture strain models for the prediction of lower and upper shelf toughness in nuclear pressure vessel steels. Metall. Trans. A10, 1557–1570 (1979). Article Google Scholar
Yeh, O.C. & Keaveny, T.M. Relative roles of microdamage and microfracture in the mechanical behaviour of trabecular bone. J. Orthopaed. Res.19, 1001–1007 (2001). ArticleCAS Google Scholar
Keyak, J.H. & Rossi, S.A. Prediction of femoral fracture load using finite element models: an examination of stress- and strain-based failure theories. J. Biomech.33, 209–214 (2000). ArticleCAS Google Scholar
Lewandowski, J.J. & Thompson A.W. in Advances in Fracture Research (Fracture 84): Proc. 6thInt. Conf. on Fracture (ed. Valluri, S. R.) 1515–1522 (Pergamon, New York, USA, 1984). Google Scholar
Rho, J.Y., Kuhn-Spearing, L. & Zioupos, P. Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys.20, 92–102 (1998). ArticleCAS Google Scholar
Weiner, S. & Wagner, H.D. The material bone: Structure-mechanical function relations. Annu. Rev. Mater. Sci.28, 271–298 (1998). ArticleCAS Google Scholar
Currey, J.D. 'Osteons' in biomechanical literature. J. Biomech.15, 717 (1982). ArticleCAS Google Scholar
Griffiths, J.R. & Owen, D.R.J. An elastic-plastic stress analysis for a notched bar in plane strain bending. J. Mech. Phys. Solids19, 419–431 (1971). Article Google Scholar
Zioupos, P., Currey, J.D., Mirza, M.S. & Barton, D.C. Experimentally determined microcracking around a circular hole in a flat plate of bone: comparison with predicted stresses. Phil. Trans. R. Soc. Lond. B.347, 383–396 (1995). ArticleCAS Google Scholar
Lotz, J.C., Cheal, E.J. & Hayes, W.C. Fracture prediction for the proximal femur using finite element models: Part I - Linear analysis. J. Biomech. Eng.113, 353–360 (1991). ArticleCAS Google Scholar
Vashishth, D. et al. In vivo diffuse damage in human vertebral trabecular bone. Bone26, 147–152 (2000). ArticleCAS Google Scholar
Parsamian, G.P. & Norman, T.L. Diffuse damage accumulation in the fracture process zone of human cortical bone specimens and its influence on fracture toughness, J. Mater. Sci.: Mater. Med.12, 779–783 (2001). CAS Google Scholar
Vashishth, D., Tanner, K.E. & Bonfield, W. Contribution, development and morphology of microcracking in cortical bone during crack propagation J. Biomech.33, 1169–1174 (2000). ArticleCAS Google Scholar
Yeni, Y.N. & Norman, T.L. Calculation of porosity and osteonal cement line effects on the effective fracture toughness of cortical bone in longitudinal crack growth. J. Biomed. Mater. Res.51, 504–509 (2000). ArticleCAS Google Scholar
Wang, X., Bank, R.A., Tekoppele, J.M. & Agrawal, C.M. The role of collagen in determining bone mechanical properties. J. Orthopaed. Res.19, 1021–1026 (2001). ArticleCAS Google Scholar
Wang, X., Shen, X., Li, X. & Agrawal, C.M. Age-related changes in the collagen network and the toughness of bone. Bone31, 1–7 (2002). Article Google Scholar
Thompson, J.B. et al. Bone indentation recovery time correlates with bond reforming time. Nature414, 773–776 (2001). ArticleCAS Google Scholar
Yeni, Y.N. & Fyhrie, D.P. in Proc. Bioeng. Conf. BED Vol. 50 293–294 (ASME, New York, USA, 2001). Google Scholar
Burr, D.B. The contribution of the organic matrix to bone's material properties. Bone31, 8–11 (2002). ArticleCAS Google Scholar
Shang, J.H. & Ritchie, R.O. Crack bridging by uncracked ligaments during fatigue-crack growth in SiC-reinforced aluminum-alloy composites. Metall. Trans. A20, 897–908 (1989). Article Google Scholar
Campbell, J.P., Venkateswara Rao, K.T. & Ritchie, R.O. The effect of microstructure on fracture toughness and fatigue crack growth behaviour in γ-titanium aluminide based intermetallics. Metall. Mater. Trans. A30, 563–577 (1999). Article Google Scholar
Phelps, J.B., Hubbard, G.B., Wang, X. & Agrawal, C.M. Microstructural heterogeneity and the fracture toughness of bone. J. Biomed. Mater. Res.51, 735–741 (2000). ArticleCAS Google Scholar
Lucksanambool, P., Higgs, W.A.J., Higgs, R.J.E.D. & Swain, M.W. Fracture toughness of bovine bone: influence of orientation and storage media. Biomater.22, 3127–3132 (2001). Article Google Scholar
Zioupos, P. & Currey, J.D. Changes in the stiffness, strength, and toughness of human cortical bone with age. Bone22, 57–66 (1998). ArticleCAS Google Scholar
Behiri, J.C. & Bonfield, W. Orientation dependence on fracture mechanics of bone. J. Biomech.22, 863–872 (1989). ArticleCAS Google Scholar
Bilby, B.A., Cardew, G.E. & Howard, I.C. in Fracture 1977 (ed. Taplin, D. H. R.)Vol. 3 197–200 (Pergamon, Oxford, UK, 1978). Google Scholar
Cotterell, B. & Rice, J.R. Slightly curved or kinked cracks. Int. J. Fract.16, 155–169 (1980). Article Google Scholar
Ritchie, R.O., Yu, W. & Bucci, R.J. Fatigue crack propagation in ARALL laminates: measurement of the effect of crack-tip shielding from crack bridging. Eng. Fract. Mech.32, 361–377 (1989). Article Google Scholar
ASTM E 399–90 (Reapproved 1997). Annual Book of ASTM Standards, Vol. 03.01: Metals- Mechanical Testing; Elevated and Low-temperature Tests; Metallography (ASTM, West Conshohocken, Pennsylvania, USA, 2001).
Haggag, F.M. & Underwood, J.H. Compliance of a three-point bend specimen at load line. Int. J. Fract.26, 63–65 (1984). Article Google Scholar