Empirically controlled mapping of the Caenorhabditis elegans protein-protein interactome network (original) (raw)

References

  1. Walhout, A.J. et al. Protein interaction mapping in C. elegans using proteins involved in vulval development. Science 287, 116–122 (2000).
    Article CAS Google Scholar
  2. Giot, L. et al. A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003).
    Article CAS Google Scholar
  3. Li, S. et al. A map of the interactome network of the metazoan C. elegans. Science 303, 540–543 (2004).
    Article CAS Google Scholar
  4. Stelzl, U. et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell 122, 957–968 (2005).
    Article CAS Google Scholar
  5. Rual, J.F. et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature 437, 1173–1178 (2005).
    Article CAS Google Scholar
  6. Davy, A. et al. A protein-protein interaction map of the Caenorhabditis elegans 26S proteasome. EMBO Rep. 2, 821–828 (2001).
    Article CAS Google Scholar
  7. Boulton, S.J. et al. Combined functional genomic maps of the C. elegans DNA damage response. Science 295, 127–131 (2002).
    Article CAS Google Scholar
  8. Reboul, J. et al. C. elegans ORFeome version 1.1: experimental verification of the genome annotation and resource for proteome-scale protein expression. Nat. Genet. 34, 35–41 (2003).
    Article Google Scholar
  9. Walhout, A.J. et al. Integrating interactome, phenome, and transcriptome mapping data for the C. elegans germline. Curr. Biol. 12, 1952–1958 (2002).
    Article CAS Google Scholar
  10. Kim, J.K. et al. Functional genomic analysis of RNA interference in C. elegans. Science 308, 1164–1167 (2005).
    Article CAS Google Scholar
  11. Tewari, M. et al. Systematic interactome mapping and genetic perturbation analysis of a C. elegans TGF-β signaling network. Mol. Cell 13, 469–482 (2004).
    Article CAS Google Scholar
  12. Matthews, L.R. et al. Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or “interologs.” Genome Res. 11, 2120–2126 (2001).
    Article CAS Google Scholar
  13. Venkatesan, K. et al. An empirical framework for binary interactome mapping. Nat. Methods advance online publication, doi:10.1038/nmeth.1280 (7 December 2008).
  14. Hunt-Newbury, R. et al. High-throughput in vivo analysis of gene expression in Caenorhabditis elegans. PLoS Biol. 5, e237 (2007).
    Article Google Scholar
  15. Dupuy, D. et al. Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans. Nat. Biotechnol. 25, 663–668 (2007).
    Article CAS Google Scholar
  16. Kao, H.L. & Gunsalus, K.C. Browsing multidimensional molecular networks with the generic network browser (N-Browse). Curr. Protoc. Bioinformatics Ch. 9, Unit 9 11 (2008).
  17. Hu, Z., Mellor, J., Wu, J. & DeLisi, C. VisANT: an online visualization and analysis tool for biological interaction data. BMC Bioinformatics 5, 17 (2004).
    Article Google Scholar
  18. Motegi, F., Velarde, N.V., Piano, F. & Sugimoto, A. Two phases of astral microtubule activity during cytokinesis in C. elegans embryos. Dev. Cell 10, 509–520 (2006).
    Article CAS Google Scholar
  19. Branda, C.S. & Stern, M.J. Mechanisms controlling sex myoblast migration in Caenorhabditis elegans hermaphrodites. Dev. Biol. 226, 137–151 (2000).
    Article CAS Google Scholar
  20. Wolf, F.W., Hung, M.S., Wightman, B., Way, J. & Garriga, G. vab-8 is a key regulator of posteriorly directed migrations in C. elegans and encodes a novel protein with kinesin motor similarity. Neuron 20, 655–666 (1998).
    Article CAS Google Scholar
  21. Schlaitz, A.L. et al. The C. elegans RSA complex localizes protein phosphatase 2A to centrosomes and regulates mitotic spindle assembly. Cell 128, 115–127 (2007).
    Article CAS Google Scholar
  22. Gunsalus, K.C. et al. Predictive models of molecular machines involved in Caenorhabditis elegans early embryogenesis. Nature 436, 861–865 (2005).
    Article CAS Google Scholar
  23. Lee, I. et al. A single gene network accurately predicts phenotypic effects of gene perturbation in Caenorhabditis elegans. Nat. Genet. 40, 181–188 (2008).
    Article CAS Google Scholar
  24. Gunsalus, K.C., Yueh, W.C., MacMenamin, P. & Piano, F. RNAiDB and PhenoBlast: web tools for genome-wide phenotypic mapping projects. Nucleic Acids Res. 32, D406–D410 (2004).
    Article CAS Google Scholar
  25. Wilson, C.A., Kreychman, J. & Gerstein, M. Assessing annotation transfer for genomics: quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores. J. Mol. Biol. 297, 233–249 (2000).
    Article CAS Google Scholar
  26. Tatusov, R.L. et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 41 (2003).
    Article Google Scholar
  27. Braun, P. et al. An experimentally derived confidence score for binary protein-protein interactions. Nat. Methods advance online publication, doi:10.1038/nmeth.1281 (7 December 2008).
  28. Boxem, M. et al. A protein domain-based interactome network for C. elegans early embryogenesis. Cell 134, 534–545 (2008).
    Article CAS Google Scholar
  29. Eyckerman, S. et al. Design and application of a cytokine-receptor-based interaction trap. Nat. Cell Biol. 3, 1114–1119 (2001).
    Article CAS Google Scholar
  30. Lemmens, I., Lievens, S., Eyckerman, S. & Tavernier, J. Reverse MAPPIT detects disruptors of protein-protein interactions in human cells. Nat. Protoc. 1, 92–97 (2006).
    Article CAS Google Scholar
  31. Lee, M.-H. & Schedl, T. RNA-binding proteins. in WormBook (ed. Blumenthal, T.) doi:10.1895/wormbook.1.7.1 (2006).
    Google Scholar
  32. Podbilewicz, B. Cell fusion. in WormBook (eds. Kramer, J.M. & Moerman, D.G.) doi:10.1895/wormbook.1.7.1 (2006).
    Google Scholar

Download references

Acknowledgements

We thank F. Piano and members of the Cancer Center for System Biology and the Vidal laboratory for discussions, A. Petcherski from WormBase for assistance with worm genetic interactions, and Z. Hu for VisANT assistance. The worm interactome project was supported by grants from the US National Institutes of Health—R01 HG001715 (M.V. and F.P.R.), R01 HG003224 (F.P.R.), F32 HG004098 (M. Tasan), T32 CA09361 (K.V.)—a University of Ghent grant GOA12051401 (J.T.), and the Fonds Wetenschappelijk Onderzoek – Vlaanderen (FWO-V) G.0031.06 (J.T.). I.L. was supported by a postdoctoral fellowship from the FWO-V. K.C.G. and H.-L.K. were supported by US Department of the Army Award W81XWH-04-1-0307 and the State of New York's Science and Tech Resources contract C040066. M.V. is a Chercheur Qualifié Honoraire from the Fonds de la Recherche Scientifique (FRS-FNRS, French Community of Belgium).

Author information

Author notes

  1. Jean-François Rual, Kavitha Venkatesan, Sebiha Cevik, Niels Klitgord, Ning Li, Nono Ayivi-Guedehoussou, Nicolas Bertin, David Szeto, Christophe Simon, Muneesh Tewari, Mike Boxem & Stuart Milstein
    Present address: Present addresses: Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, Massachusetts 02115, USA (J.-F.R.), Novartis Institutes for Biomedical Research Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA (K.V.), School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland (S.C.), Bioinformatics Program, Boston University, 705 Commonwealth Avenue, Boston, Massachusetts 02215, USA (N.K.), Wyeth Pharmaceuticals Inc., 35 Cambridgepark Drive, Cambridge, Massachusetts 02140, USA (N.L.), Harvard School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, USA (N.A.-G.), RIKEN Omics Sciences Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan (N.B., C.S.), University of California San Francisco School of Medicine, 500 Parnassus Avenue, San Francisco, California 94143, USA (D.S.), Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, Washington 98109, USA (M. Tewari), Utrecht University, Kruytgebouw N309, 8 Padualaan, 3584 CH Utrecht, The Netherlands (M.B.) and Alnylam Pharmaceutical, 300 Third Street, Cambridge, Massachusetts 02142, USA (S.M.).,
  2. Nicolas Simonis, Jean-François Rual, Anne-Ruxandra Carvunis, Murat Tasan and Irma Lemmens: These authors contributed equally to this work.

Authors and Affiliations

  1. Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, 02115, Massachusetts, USA
    Nicolas Simonis, Jean-François Rual, Anne-Ruxandra Carvunis, Tomoko Hirozane-Kishikawa, Tong Hao, Julie M Sahalie, Kavitha Venkatesan, Fana Gebreab, Sebiha Cevik, Niels Klitgord, Changyu Fan, Pascal Braun, Ning Li, Nono Ayivi-Guedehoussou, Elizabeth Dann, Nicolas Bertin, David Szeto, Amélie Dricot, Muhammed A Yildirim, Chenwei Lin, Christophe Simon, Alex Smolyar, Jin Sook Ahn, Muneesh Tewari, Mike Boxem, Stuart Milstein, Haiyuan Yu, Matija Dreze, Michael E Cusick, David E Hill, Frederick P Roth & Marc Vidal
  2. Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, 02115, Massachusetts, USA
    Nicolas Simonis, Jean-François Rual, Anne-Ruxandra Carvunis, Tomoko Hirozane-Kishikawa, Tong Hao, Julie M Sahalie, Kavitha Venkatesan, Fana Gebreab, Sebiha Cevik, Niels Klitgord, Changyu Fan, Pascal Braun, Ning Li, Nono Ayivi-Guedehoussou, Elizabeth Dann, Nicolas Bertin, David Szeto, Amélie Dricot, Muhammed A Yildirim, Chenwei Lin, Christophe Simon, Alex Smolyar, Jin Sook Ahn, Muneesh Tewari, Mike Boxem, Stuart Milstein, Haiyuan Yu, Matija Dreze, Michael E Cusick, David E Hill & Marc Vidal
  3. Techniques de l'Ingénierie Médicale et de la Complexité - Informatique, Mathématiques et Applications de Grenoble (TIMC-IMAG), Unité Mixte de Recherche 5525 Centre National de la Recherche Scientifique (CNRS), Faculté de Médecine, Université Joseph Fourier, La Tronche Cedex, 38706, France
    Anne-Ruxandra Carvunis
  4. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, 02115, Massachusetts, USA
    Murat Tasan & Frederick P Roth
  5. Department of Medical Protein Research, and Department of Biochemistry, Vlaams Instituut voor Biotechnologie, Faculty of Medicine and Health Sciences, Ghent University, 3 Albert Baertsoenkaai, Ghent, 9000, Belgium
    Irma Lemmens, Anne-Sophie de Smet & Jan Tavernier
  6. Division of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, 02138, Massachusetts, USA
    Muhammed A Yildirim
  7. Department of Biology, Center for Genomics and Systems Biology, New York University, 100 Washington Square East, New York, 10003, New York, USA
    Huey-Ling Kao & Kristin C Gunsalus
  8. Massachusetts General Hospital Center for Cancer Research, Building 149, 13th Street, Charlestown, 02129, Massachusetts, USA
    Mike Boxem
  9. Unité de Recherche en Biologie Moléculaire, Facultés Notre-Dame de la Paix, 61 Rue de Bruxelles, Namur, 5000, Belgium
    Matija Dreze & Jean Vandenhaute

Authors

  1. Nicolas Simonis
    You can also search for this author inPubMed Google Scholar
  2. Jean-François Rual
    You can also search for this author inPubMed Google Scholar
  3. Anne-Ruxandra Carvunis
    You can also search for this author inPubMed Google Scholar
  4. Murat Tasan
    You can also search for this author inPubMed Google Scholar
  5. Irma Lemmens
    You can also search for this author inPubMed Google Scholar
  6. Tomoko Hirozane-Kishikawa
    You can also search for this author inPubMed Google Scholar
  7. Tong Hao
    You can also search for this author inPubMed Google Scholar
  8. Julie M Sahalie
    You can also search for this author inPubMed Google Scholar
  9. Kavitha Venkatesan
    You can also search for this author inPubMed Google Scholar
  10. Fana Gebreab
    You can also search for this author inPubMed Google Scholar
  11. Sebiha Cevik
    You can also search for this author inPubMed Google Scholar
  12. Niels Klitgord
    You can also search for this author inPubMed Google Scholar
  13. Changyu Fan
    You can also search for this author inPubMed Google Scholar
  14. Pascal Braun
    You can also search for this author inPubMed Google Scholar
  15. Ning Li
    You can also search for this author inPubMed Google Scholar
  16. Nono Ayivi-Guedehoussou
    You can also search for this author inPubMed Google Scholar
  17. Elizabeth Dann
    You can also search for this author inPubMed Google Scholar
  18. Nicolas Bertin
    You can also search for this author inPubMed Google Scholar
  19. David Szeto
    You can also search for this author inPubMed Google Scholar
  20. Amélie Dricot
    You can also search for this author inPubMed Google Scholar
  21. Muhammed A Yildirim
    You can also search for this author inPubMed Google Scholar
  22. Chenwei Lin
    You can also search for this author inPubMed Google Scholar
  23. Anne-Sophie de Smet
    You can also search for this author inPubMed Google Scholar
  24. Huey-Ling Kao
    You can also search for this author inPubMed Google Scholar
  25. Christophe Simon
    You can also search for this author inPubMed Google Scholar
  26. Alex Smolyar
    You can also search for this author inPubMed Google Scholar
  27. Jin Sook Ahn
    You can also search for this author inPubMed Google Scholar
  28. Muneesh Tewari
    You can also search for this author inPubMed Google Scholar
  29. Mike Boxem
    You can also search for this author inPubMed Google Scholar
  30. Stuart Milstein
    You can also search for this author inPubMed Google Scholar
  31. Haiyuan Yu
    You can also search for this author inPubMed Google Scholar
  32. Matija Dreze
    You can also search for this author inPubMed Google Scholar
  33. Jean Vandenhaute
    You can also search for this author inPubMed Google Scholar
  34. Kristin C Gunsalus
    You can also search for this author inPubMed Google Scholar
  35. Michael E Cusick
    You can also search for this author inPubMed Google Scholar
  36. David E Hill
    You can also search for this author inPubMed Google Scholar
  37. Jan Tavernier
    You can also search for this author inPubMed Google Scholar
  38. Frederick P Roth
    You can also search for this author inPubMed Google Scholar
  39. Marc Vidal
    You can also search for this author inPubMed Google Scholar

Contributions

J.-F.R., N.S. and A.-R.C. coordinated experiments and data analysis. J.-F.R., T.H.-K., J.M.S., F.G., S.C., P.B., N.L., N.A.-G., E.D., D.S., A.D., C.S., M.V., H.Y., M.B., S.M., M.D., M. Tewari and J.S.A. performed the high-throughput ORF cloning and Y2H screens. I.L., A.-S.d.S., P.B. and J.T. conducted the MAPPIT experiments. N.S., A.-R.C., M. Tasan, T.H., N.K., K.V., C.F., N.B., M.A.Y., C.L., A.S., H.-L.K. and K.C.G. performed the computational analyses. M. Tasan, N.S., C.F., A.-R.C., H.-L.K. and K.C.G. adapted or built the website and visualization tools. N.S., A.-R.C., J.-F.R., M.E.C., J.V., F.P.R. and M.V. wrote the manuscript. M.V. conceived the project. D.E.H., J.T., F.P.R. and M.V. co-directed the project.

Corresponding authors

Correspondence toDavid E Hill, Jan Tavernier, Frederick P Roth or Marc Vidal.

Supplementary information

Rights and permissions

About this article

Cite this article

Simonis, N., Rual, JF., Carvunis, AR. et al. Empirically controlled mapping of the Caenorhabditis elegans protein-protein interactome network.Nat Methods 6, 47–54 (2009). https://doi.org/10.1038/nmeth.1279

Download citation