FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing (original) (raw)

References

  1. Gesteland, R., Cech, T. & Atkins, J. (eds). The RNA World 3rd edn. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2005).
  2. Affymetrix/Cold Spring Harbor Laboratory ENCODE Transcriptome Project. Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs. Nature 457, 1028–1032 (2009).
  3. Guttman, M. et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458, 223–227 (2009).
    Article CAS Google Scholar
  4. Ambros, V. microRNAs: tiny regulators with great potential. Cell 107, 823–826 (2001).
    Article CAS Google Scholar
  5. Kapranov, P. et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316, 1484–1488 (2007).
    Article CAS Google Scholar
  6. Knapp, G. Enzymatic approaches to probing of RNA secondary and tertiary structure. Methods Enzymol. 2, 192–212 (1989).
    Article Google Scholar
  7. Low, J.T. & Weeks, K.M. SHAPE-directed RNA secondary structure prediction. Methods 52, 150–158 (2010).
    Article CAS Google Scholar
  8. Machado-Lima, A., del Portillo, H.A. & Durham, A.M. Computational methods in noncoding RNA research. J. Math. Biol. 56, 15–49 (2008).
    Article Google Scholar
  9. Crawford, G.E. et al. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res. 16, 123–131 (2006).
    Article CAS Google Scholar
  10. Ying, Q.-L., Stavridis, M., Griffiths, D., Li, M. & Smith, A. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat. Biotechnol. 21, 183–186 (2003).
    Article CAS Google Scholar
  11. Desai, N.A. & Shankar, V. Single-strand-specific nucleases. FEMS Microbiol. Rev. 26, 457–491 (2003).
    Article CAS Google Scholar
  12. Cameron, V. & Uhlenbeck, O.C. 3′-phosphatase activity in T4 polynucleotide kinase. Biochemistry 16, 5120–5126 (1977).
    Article CAS Google Scholar
  13. Romier, C., Dominguez, R., Lahm, A., Dahl, O. & Suck, D. Recognition of single-stranded DNA by nuclease P1: high resolution crystal structures of complexes with substrate analogs. Proteins 32, 414–424 (1998).
    Article CAS Google Scholar
  14. Naik, A.K. & Raghavan, S.C. P1 nuclease cleavage is dependent on length of the mismatches in DNA. DNA Repair (Amst.) 7, 1384–1391 (2008).
    Article CAS Google Scholar
  15. Parker, K.A. & Steitz, J.A. Structural analyses of the human U3 ribonucleoprotein particle reveal a conserved sequence available for base pairing with pre-rRNA. Mol. Cell. Biol. 7, 2899–2913 (1987).
    Article CAS Google Scholar
  16. Mougin, A., Gottschalk, A., Fabrizio, P., Lührmann, R. & Branlant, C. Direct probing of RNA structure and RNA-protein interactions in purified HeLa cell's and yeast spliceosomal U4/U6.U5 tri-snRNP particles. J. Mol. Biol. 317, 631–649 (2002).
    Article CAS Google Scholar
  17. Granneman, S. et al. Role of pre-rRNA base pairing and 80S complex formation in subnucleolar localization of the U3 snoRNP. Mol. Cell. Biol. 24, 8600–8610 (2004).
    Article CAS Google Scholar
  18. Kass, S., Tyc, K., Steitz, J.A. & Sollner-Webb, B. The U3 small nucleolar ribonucleoprotein functions in the first step of preribosomal RNA processing. Cell 60, 897–908 (1990).
    Article CAS Google Scholar
  19. Peculis, B.A. & Steitz, J.A. Disruption of U8 nucleolar snRNA inhibits 5.8S and 28S rRNA processing in the Xenopus oocyte. Cell 73, 1233–1245 (1993).
    Article CAS Google Scholar
  20. Tycowski, K., Shu, M. & Steitz, J. Requirement for intron-encoded U22 small nucleolar RNA in 18S ribosomal RNA maturation. Science 266, 1558–1561 (1994).
    Article CAS Google Scholar
  21. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).
    Article CAS Google Scholar
  22. Kertesz, M. et al. Genome-wide measurement of RNA secondary structure in yeast. Nature 467, 103–107 (2010).
    Article CAS Google Scholar
  23. Reuter, J.S. & Mathews, D.H. RNAstructure: software for RNA secondary structure prediction and analysis. BMC Bioinformatics 11, 129 (2010).
    Article Google Scholar
  24. Mandal, M. & Breaker, R.R. Gene regulation by riboswitches. Nat. Rev. Mol. Cell Biol. 5, 451–463 (2004).
    Article CAS Google Scholar
  25. Maroney, P., Romfo, C. & Nilsen, T. Nuclease protection of RNAs containing site-specific labels: a rapid method for mapping RNA-protein interactions. RNA 6, 1905–1909 (2000).
    Article CAS Google Scholar
  26. Kiss-László, Z., Henry, Y., Bachellerie, J.P., Caizergues-Ferrer, M. & Kiss, T. Site-specific ribose methylation of preribosomal RNA: a novel function for small nucleolar RNAs. Cell 85, 1077–1088 (1996).
    Article Google Scholar
  27. Beard, C., Hochedlinger, K., Plath, K., Wutz, A. & Jaenisch, R. Efficient method to generate single-copy transgenic mice by site-specific integration in embryonic stem cells. Genesis 44, 23–28 (2006).
    Article CAS Google Scholar
  28. Skarnes, W.C. Gene trapping methods for the identification and functional analysis of cell surface proteins in mice. Methods Enzymol. 328, 592–615 (2000).
    Article CAS Google Scholar
  29. Sobczak, K., Michlewski, G., de Mezer, M., Krol, J. & Krzyzosiak, W.J. Trinucleotide repeat system for sequence specificity analysis of RNA structure probing reagents. Anal. Biochem. 402, 40–46 (2010).
    Article CAS Google Scholar
  30. Mortazavi, A., Williams, B.A., Mccue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5, 621–628 (2008).
    Article CAS Google Scholar

Download references