Using deep learning to model the hierarchical structure and function of a cell (original) (raw)

References

  1. Farabet, C., Couprie, C., Najman, L. & Lecun, Y. Learning hierarchical features for scene labeling. IEEE Trans. Pattern Anal. Mach. Intell. 35, 1915–1929 (2013).
    Article Google Scholar
  2. Mikolov, T., Deoras, A., Povey, D., Burget, L. & Černocký, J. Strategies for training large scale neural network language models. In 2011 IEEE Workshop on Automatic Speech Recognition Understanding 196–201 (IEEE, 2011).
  3. Hinton, G. et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29, 82–97 (2012).
    Article Google Scholar
  4. Sainath, T.N., Mohamed, A.R., Kingsbury, B. & Ramabhadran, B. Deep convolutional neural networks for LVCSR. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing 8614–8618 (IEEE, 2013).
  5. Collobert, R. et al. Natural language processing (almost) from scratch. J. Mach. Learn. Res. 12, 2493–2537 (2011).
    Google Scholar
  6. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
    Article CAS Google Scholar
  7. Silver, D. et al. Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489 (2016).
    Article CAS Google Scholar
  8. Brosin, H.W. An introduction to cybernetics. Br. J. Psychiatry 104, 590–592 (1958).
    Google Scholar
  9. The Gene Ontology Consortium. Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res. 45, D331–D338 (2016).
  10. Dutkowski, J. et al. A gene ontology inferred from molecular networks. Nat. Biotechnol. 31, 38–45 (2013).
    Article CAS Google Scholar
  11. Kramer, M., Dutkowski, J., Yu, M., Bafna, V. & Ideker, T. Inferring gene ontologies from pairwise similarity data. Bioinformatics 30, i34–i42 (2014).
    Article CAS Google Scholar
  12. Carvunis, A.-R. & Ideker, T. Siri of the cell: what biology could learn from the iPhone. Cell 157, 534–538 (2014).
    Article CAS Google Scholar
  13. Yu, M.K. et al. Translation of genotype to phenotype by a hierarchy of cell subsystems. Cell Syst. 2, 77–88 (2016).
    Article CAS Google Scholar
  14. Copley, S.D. Moonlighting is mainstream: paradigm adjustment required. BioEssays 34, 578–588 (2012).
    Article CAS Google Scholar
  15. Costanzo, M. et al. A global genetic interaction network maps a wiring diagram of cellular function. Science 353, aaf1420 (2016).
    Article Google Scholar
  16. Costanzo, M. et al. The genetic landscape of a cell. Science 327, 425–431 (2010).
    Article CAS Google Scholar
  17. Szappanos, B. et al. An integrated approach to characterize genetic interaction networks in yeast metabolism. Nat. Genet. 43, 656–662 (2011).
    Article CAS Google Scholar
  18. Lee, I. et al. Predicting genetic modifier loci using functional gene networks. Genome Res. 20, 1143–1153 (2010).
    Article CAS Google Scholar
  19. Pandey, G. et al. An integrative multi-network and multi-classifier approach to predict genetic interactions. PLoS Comput. Biol. 6, e1000928 (2010).
    Article Google Scholar
  20. Xu, C., Wang, S., Thibault, G. & Ng, D.T.W. Futile protein folding cycles in the ER are terminated by the unfolded protein O-mannosylation pathway. Science 340, 978–981 (2013).
    Article CAS Google Scholar
  21. Free, S.J. Fungal cell wall organization and biosynthesis. Adv. Genet. 31, 33–82 (2013).
    Article Google Scholar
  22. Walter, P. & Ron, D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334, 1081–1086 (2011).
    Article CAS Google Scholar
  23. Scrimale, T., Didone, L., de Mesy Bentley, K.L. & Krysan, D.J. The unfolded protein response is induced by the cell wall integrity mitogen-activated protein kinase signaling cascade and is required for cell wall integrity in Saccharomyces cerevisiae. Mol. Biol. Cell 20, 164–175 (2009).
    Article CAS Google Scholar
  24. Jonikas, M.C. et al. Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science 323, 1693–1697 (2009).
    Article CAS Google Scholar
  25. Srivas, R. et al. A UV-induced genetic network links the RSC complex to nucleotide excision repair and shows dose-dependent rewiring. Cell Rep. 5, 1714–1724 (2013).
    Article CAS Google Scholar
  26. Cadet, J., Sage, E. & Douki, T. Ultraviolet radiation-mediated damage to cellular DNA. Mutat. Res. 571, 3–17 (2005).
    Article CAS Google Scholar
  27. Pareto, V. Cours d'Économie Politique (Librairie Droz, 1964).
  28. Farrugia, G. & Balzan, R. Oxidative stress and programmed cell death in yeast. Front. Oncol. 2, 64 (2012).
    Article Google Scholar
  29. Pujol-Carrion, N. & de la Torre-Ruiz, M.A. Glutaredoxins Grx4 and Grx3 of Saccharomyces cerevisiae play a role in actin dynamics through their Trx domains, which contributes to oxidative stress resistance. Appl. Environ. Microbiol. 76, 7826–7835 (2010).
    Article CAS Google Scholar
  30. Gene Ontology Consortium. Gene Ontology Consortium: going forward. Nucleic Acids Res. 43, D1049–D1056 (2015).
  31. Kim, H. et al. YeastNet v3: a public database of data-specific and integrated functional gene networks for Saccharomyces cerevisiae. Nucleic Acids Res. 42, D731–D736 (2014).
    Article CAS Google Scholar
  32. Yang, J. et al. Genetic variance estimation with imputed variants finds negligible missing heritability for human height and body mass index. Nat. Genet. 47, 1114–1120 (2015).
    Article CAS Google Scholar
  33. Yang, J., Zaitlen, N.A., Goddard, M.E., Visscher, P.M. & Price, A.L. Advantages and pitfalls in the application of mixed-model association methods. Nat. Genet. 46, 100–106 (2014).
    Article Google Scholar
  34. Chen, W.W., Niepel, M. & Sorger, P.K. Classic and contemporary approaches to modeling biochemical reactions. Genes Dev. 24, 1861–1875 (2010).
    Article CAS Google Scholar
  35. Szappanos, B. et al. An integrated approach to characterize genetic interaction networks in yeast metabolism. Nat. Genet. 43, 656–662 (2011).
    Article CAS Google Scholar
  36. Karr, J.R. et al. A whole-cell computational model predicts phenotype from genotype. Cell 150, 389–401 (2012).
    Article CAS Google Scholar
  37. Lipton, Z.C. The mythos of model interpretability. Preprint at https://arxiv.org/abs/1606.03490 (2017).
  38. Mahendran, A. & Vedaldi, A. Understanding deep image representations by inverting them. In Proceedings of the IEEE conference on computer vision and pattern recognition 5188–5196 (IEEE, 2015).
  39. Vondrick, C., Khosla, A., Malisiewicz, T. & Torralba, A. Hoggles: Visualizing object detection features. In Proceedings of the IEEE International Conference on Computer Vision 1–8 (IEEE, 2013).
  40. Weinzaepfel, P., Jégou, H. & Pérez, P. Reconstructing an image from its local descriptors. In CVPR 2011 337–344 (IEEE, 2011).
  41. Chakraborty, S. et al. Interpretability of deep learning models: a survey of results. Paper presented at IEEE Smart World Congress 2017 Workshop: DAIS 2017, Workshop on Distributed Analytics InfraStructure and Algorithms for Multi-Organization Federations, San Francisco, CA, USA, 7–8 August 2017.
  42. Bahdanau, D., Cho, K. & Bengio, Y. Neural machine translation by jointly learning to align and translate. Preprint at https://arxiv.org/abs/1409.0473 (2016).
  43. Lei, T., Barzilay, R. & Jaakkola, T. Rationalizing neural predictions. Preprint at https://arxiv.org/abs/1606.04155 (2016).
  44. Visscher, P.M., Brown, M.A., McCarthy, M.I. & Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24 (2012).
    Article CAS Google Scholar
  45. Szegedy, C. et al. Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision and Pattern Recognition 1–9 (IEEE, 2015).
  46. Lee, C.-Y., Xie, S., Gallagher, P.W., Zhang, Z. & Tu, Z. Deeply-Supervised Nets. in AISTATS 2, 5 (2015).
    Google Scholar
  47. Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate shift. Preprint at https://arxiv.org/abs/1502.03167 (2015).
  48. Kingma, D.P. & Ba, J. Adam: a method for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980 (2017).
  49. Rumelhart, D.E., Hinton, G.E. & Williams, R.J. Learning representations by back-propagating errors. Nature 323, 533–536 (1986).
    Article Google Scholar
  50. Alain, G. & Bengio, Y. Understanding intermediate layers using linear classifier probes. Preprint at https://arxiv.org/abs/1610.01644 (2016).
  51. Franz, M. et al. Cytoscape.js: a graph theory library for visualisation and analysis. Bioinformatics 32, 309–311 (2016).
    CAS PubMed Google Scholar
  52. Bostock, M., Ogievetsky, V. & Heer, J. D3: data-driven documents. IEEE Trans. Vis. Comput. Graph. 17, 2301–2309 (2011).
    Article Google Scholar
  53. Stefanov, S. React: Up & Running: Building Web Applications. (O'Reilly Media, 2016).
  54. Wood, L., Nicol, G., Robie, J., Champion, M. & Byrne, S. Document Object Model (DOM) level 3 core specification. W3Chttps://www.w3.org/TR/2004/REC-DOM-Level-3-Core-20040407/DOM3-Core.html. (2004).
  55. Gormley, C. & Tong, Z. Elasticsearch: The Definitive Guide: A Distributed Real-Time Search and Analytics Engine (O'Reilly Media, 2015).

Download references