Developmental axon pruning mediated by BDNF-p75NTR–dependent axon degeneration (original) (raw)

References

  1. Bagri, A., Cheng, H.J., Yaron, A., Pleasure, S.J. & Tessier-Lavigne, M. Stereotyped pruning of long hippocampal axon branches triggered by retraction inducers of the semaphorin family. Cell 113, 285–299 (2003).
    Article CAS PubMed Google Scholar
  2. Bishop, D.L., Misgeld, T., Walsh, M.K., Gan, W.B. & Lichtman, J.W. Axon branch removal at developing synapses by axosome shedding. Neuron 44, 651–661 (2004).
    Article CAS PubMed Google Scholar
  3. Nakamura, H. & O'Leary, D.D. Inaccuracies in initial growth and arborization of chick retinotectal axons followed by course corrections and axon remodeling to develop topographic order. J. Neurosci. 9, 3776–3795 (1989).
    Article CAS PubMed PubMed Central Google Scholar
  4. Luo, L. & O'Leary, D.D. Axon retraction and degeneration in development and disease. Annu. Rev. Neurosci. 28, 127–156 (2005).
    Article CAS PubMed Google Scholar
  5. Gan, W.B. & Lichtman, J.W. Synaptic segregation at the developing neuromuscular junction. Science 282, 1508–1511 (1998).
    Article CAS PubMed Google Scholar
  6. Purves, D., Snider, W.D. & Voyvodic, J.T. Trophic regulation of nerve cell morphology and innervation in the autonomic nervous system. Nature 336, 123–128 (1988).
    Article CAS PubMed Google Scholar
  7. Mytilineou, C. & Black, I.B. Regeneration of sympathetic neurons: effect of decentralization. Brain Res. 109, 382–386 (1976).
    Article CAS PubMed Google Scholar
  8. Lawrence, J.M., Black, I.B., Mytilineou, C., Field, P.M. & Raisman, G. Decentralization of the superior cervical ganglion in neonates impairs the development of the innervation of the iris. A quantitative ultrastructural study. Brain Res. 168, 13–19 (1979).
    Article CAS PubMed Google Scholar
  9. Vidovic, M. & Hill, C.E. Withdrawal of collaterals of sympathetic axons to the rat eye during postnatal development: the role of function. J. Auton. Nerv. Syst. 22, 57–65 (1988).
    Article CAS PubMed Google Scholar
  10. Vidovic, M., Hill, C.E. & Hendry, I.A. Developmental time course of the sympathetic postganglionic innervation of the rat eye. Brain Res. 429, 133–138 (1987).
    Article CAS PubMed Google Scholar
  11. Hill, C.E. & Vidovic, M. The role of competition in the refinement of the projections of sympathetic neurons to the rat eye during development. Int. J. Dev. Neurosci. 7, 539–551 (1989).
    Article CAS PubMed Google Scholar
  12. Lee, K.F., Bachman, K., Landis, S. & Jaenisch, R. Dependence on p75 for innervation of some sympathetic targets. Science 263, 1447–1449 (1994).
    Article CAS PubMed Google Scholar
  13. Dhanoa, N.K., Krol, K.M., Jahed, A., Crutcher, K.A. & Kawaja, M.D. Null mutations for exon III and exon IV of the p75 neurotrophin receptor gene enhance sympathetic sprouting in response to elevated levels of nerve growth factor in transgenic mice. Exp. Neurol. 198, 416–426 (2006).
    Article CAS PubMed Google Scholar
  14. Kohn, J., Aloyz, R.S., Toma, J.G., Haak-Frendscho, M. & Miller, F.D. Functionally antagonistic interactions between the TrkA and p75 neurotrophin receptors regulate sympathetic neuron growth and target innervation. J. Neurosci. 19, 5393–5408 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  15. Causing, C.G. et al. Synaptic innervation density is regulated by neuron-derived BDNF. Neuron 18, 257–267 (1997).
    Article CAS PubMed Google Scholar
  16. Singh, K.K. & Miller, F.D. Activity regulates positive and negative neurotrophin-derived signals to determine axon competition. Neuron 45, 837–845 (2005).
    Article CAS PubMed Google Scholar
  17. Bamji, S.X. et al. The p75 neurotrophin receptor mediates neuronal apoptosis and is essential for naturally occurring sympathetic neuron death. J. Cell Biol. 140, 911–923 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  18. Hibbert, A.P., Kramer, B.M., Miller, F.D. & Kaplan, D.R. The localization, trafficking and retrograde transport of BDNF bound to p75NTR in sympathetic neurons. Mol. Cell. Neurosci. 32, 387–402 (2006).
    Article CAS PubMed Google Scholar
  19. Tao, X., West, A.E., Chen, W.G., Corfas, G. & Greenberg, M.E. A calcium-responsive transcription factor, CaRF, that regulates neuronal activity-dependent expression of BDNF. Neuron 33, 383–395 (2002).
    Article CAS PubMed Google Scholar
  20. Chen, W.G. et al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 302, 885–889 (2003).
    Article CAS PubMed Google Scholar
  21. Miller, F.D. et al. Nerve growth factor derived from terminals selectively increases the ratio of p75 to trkA NGF receptors on mature sympathetic neurons. Dev. Biol. 161, 206–217 (1994).
    Article PubMed Google Scholar
  22. Zhai, Q. et al. Involvement of the ubiquitin-proteasome system in the early stages of Wallerian degeneration. Neuron 39, 217–225 (2003).
    Article CAS PubMed Google Scholar
  23. MacInnis, B.L. & Campenot, R.B. Regulation of Wallerian degeneration and nerve growth factor withdrawal-induced pruning of axons of sympathetic neurons by the proteasome and the MEK/Erk pathway. Mol. Cell. Neurosci. 28, 430–439 (2005).
    Article CAS PubMed Google Scholar
  24. MacPhee, I.J. & Barker, P.A. Brain-derived neurotrophic factor binding to the p75 neurotrophin receptor reduces TrkA signaling while increasing serine phosphorylation in the TrkA intracellular domain. J. Biol. Chem. 272, 23547–23551 (1997).
    Article CAS PubMed Google Scholar
  25. Atwal, J.K., Massie, B., Miller, F.D. & Kaplan, D.R. The TrkB-Shc site signals neuronal survival and local axon growth via MEK and P13-kinase. Neuron 27, 265–277 (2000).
    Article CAS PubMed Google Scholar
  26. Atwal, J.K., Singh, K.K., Tessier-Lavigne, M., Miller, F.D. & Kaplan, D.R. Semaphorin 3F antagonizes neurotrophin-induced phosphatidylinositol 3-kinase and mitogen-activated protein kinase kinase signaling: a mechanism for growth cone collapse. J. Neurosci. 23, 7602–7609 (2003).
    Article CAS PubMed PubMed Central Google Scholar
  27. Korhonen, J.M., Said, F.A., Wong, A.J. & Kaplan, D.R. Gab1 mediates neurite outgrowth, DNA synthesis and survival in PC12 cells. J. Biol. Chem. 274, 37307–37314 (1999).
    Article CAS PubMed Google Scholar
  28. Majdan, M., Walsh, G.S., Aloyz, R. & Miller, F.D. TrkA mediates developmental sympathetic neuron survival in vivo by silencing an ongoing p75NTR-mediated death signal. J. Cell Biol. 155, 1275–1285 (2001).
    Article CAS PubMed PubMed Central Google Scholar
  29. Aloyz, R.S., Bamji, S.X., Pozniak, C.D., Kaplan, D.R. & Miller, F.D. p53 is essential for developmental neuron death as regulated by the TrkA and p75 neurotrophin receptors. J. Cell Biol. 143, 1691–1703 (1998).
    Article CAS PubMed PubMed Central Google Scholar
  30. Majdan, M. & Miller, F.D. Neuronal life and death decisions: functional antagonism between the Trk and p75 neurotrophin receptors. Int. J. Dev. Neurosci. 17, 153–161 (1999).
    Article CAS PubMed Google Scholar
  31. Miller, F.D. & Kaplan, D.R. Neurotrophin signaling pathways regulating neuronal apoptosis. Cell. Mol. Life Sci. 58, 1045–1053 (2001).
    Article CAS PubMed Google Scholar
  32. Deppmann, C.D., Mihalas, S., Sharma, N., Lonze, B.E., Niebur, E. & Ginty, D.D. A model for neuronal competition during development. Science published online, doi:10.1126/science.1152677 (6 March 2008).
  33. Michael, G.J. et al. Nerve growth factor treatment increases brain-derived neurotrophic factor selectively in TrkA-expressing dorsal root ganglion cells and in their central terminations within the spinal cord. J. Neurosci. 17, 8476–8490 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  34. Cao, L. et al. Genetic modulation of BDNF signaling affects the outcome of axonal competition in vivo. Curr. Biol. 17, 911–921 (2007).
    Article CAS PubMed PubMed Central Google Scholar
  35. Plachta, N. et al. Identification of a lectin causing the degeneration of neuronal processes using engineered embryonic stem cells. Nat. Neurosci. 10, 712–719 (2007).
    Article CAS PubMed Google Scholar
  36. Yeo, T.T. et al. Absence of p75NTR causes increased basal forebrain cholinergic neuron size, choline acetyltransferase activity and target innervation. J. Neurosci. 17, 7594–7605 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  37. Campenot, R.B. Regeneration of neurites on long-term cultures of sympathetic neurons deprived of nerve growth factor. Science 214, 579–581 (1981).
    Article CAS PubMed Google Scholar
  38. Campenot, R.B. Local control of neurite development by nerve growth factor. Proc. Natl. Acad. Sci. USA 74, 4516–4519 (1977).
    Article CAS PubMed PubMed Central Google Scholar
  39. Kaplan, D.R. & Miller, F.D. Axon growth inhibition: signals from the p75 neurotrophin receptor. Nat. Neurosci. 6, 435–436 (2003).
    Article CAS PubMed Google Scholar
  40. Yiu, G. & He, Z. Signaling mechanisms of the myelin inhibitors of axon regeneration. Curr. Opin. Neurobiol. 13, 545–551 (2003).
    Article CAS PubMed Google Scholar
  41. Coggeshall, R.E., Chung, K., Greenwood, D. & Hulsebosch, C.E. An empirical method for converting nucleolar counts to neuronal numbers. J. Neurosci. Methods 12, 125–132 (1984).
    Article CAS PubMed Google Scholar
  42. Ma, Y., Campenot, R.B. & Miller, F.D. Concentration-dependent regulation of neuronal gene expression by nerve growth factor. J. Cell Biol. 117, 135–141 (1992).
    Article CAS PubMed Google Scholar
  43. Vaillant, A.R. et al. Depolarization and neurotrophins converge on the phosphatidylinositol 3-kinase–Akt pathway to synergistically regulate neuronal survival. J. Cell Biol. 146, 955–966 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  44. Campenot, R.B., Walji, A.H. & Draker, D.D. Effects of sphingosine, staurosporine, and phorbol ester on neurites of rat sympathetic neurons growing in compartmented cultures. J. Neurosci. 11, 1126–1139 (1991).
    Article CAS PubMed PubMed Central Google Scholar
  45. Friedman, W.J., Black, I.B. & Kaplan, D.R. Distribution of the neurotrophins brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin-4/5 in the postnatal rat brain: an immunocytochemical study. Neuroscience 84, 101–114 (1998).
    Article CAS PubMed Google Scholar

Download references