Representation of negative motivational value in the primate lateral habenula (original) (raw)

References

  1. Delgado, M.R., Nystrom, L.E., Fissell, C., Noll, D.C. & Fiez, J.A. Tracking the hemodynamic responses to reward and punishment in the striatum. J. Neurophysiol. 84, 3072–3077 (2000).
    Article CAS Google Scholar
  2. O'Doherty, J., Kringelbach, M.L., Rolls, E.T., Hornak, J. & Andrews, C. Abstract reward and punishment representations in the human orbitofrontal cortex. Nat. Neurosci. 4, 95–102 (2001).
    Article CAS Google Scholar
  3. Breiter, H.C., Aharon, I., Kahneman, D., Dale, A. & Shizgal, P. Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron 30, 619–639 (2001).
    Article CAS Google Scholar
  4. Nieuwenhuis, S. et al. Activity in human reward-sensitive brain areas is strongly context dependent. Neuroimage 25, 1302–1309 (2005).
    Article Google Scholar
  5. Tobler, P.N., Fiorillo, C.D. & Schultz, W. Adaptive coding of reward value by dopamine neurons. Science 307, 1642–1645 (2005).
    Article CAS Google Scholar
  6. Sugrue, L.P., Corrado, G.S. & Newsome, W.T. Matching behavior and the representation of value in the parietal cortex. Science 304, 1782–1787 (2004).
    Article CAS Google Scholar
  7. Paton, J.J., Belova, M.A., Morrison, S.E. & Salzman, C.D. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439, 865–870 (2006).
    Article CAS Google Scholar
  8. Padoa-Schioppa, C. & Assad, J.A. Neurons in the orbitofrontal cortex encode economic value. Nature 441, 223–226 (2006).
    Article CAS Google Scholar
  9. Samejima, K., Ueda, Y., Doya, K. & Kimura, M. Representation of action-specific reward values in the striatum. Science 310, 1337–1340 (2005).
    Article CAS Google Scholar
  10. Sallet, J. et al. Expectations, gains and losses in the anterior cingulate cortex. Cogn. Affect. Behav. Neurosci. 7, 327–336 (2007).
    Article Google Scholar
  11. Lau, B. & Glimcher, P.W. Value representations in the primate striatum during matching behavior. Neuron 58, 451–463 (2008).
    Article CAS Google Scholar
  12. Mirenowicz, J. & Schultz, W. Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature 379, 449–451 (1996).
    Article CAS Google Scholar
  13. Yamada, H., Matsumoto, N. & Kimura, M. Tonically active neurons in the primate caudate nucleus and putamen differentially encode instructed motivational outcomes of action. J. Neurosci. 24, 3500–3510 (2004).
    Article CAS Google Scholar
  14. Kobayashi, S. et al. Influences of rewarding and aversive outcomes on activity in macaque lateral prefrontal cortex. Neuron 51, 861–870 (2006).
    Article CAS Google Scholar
  15. Herkenham, M. & Nauta, W.J. Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber-of-passage problem. J. Comp. Neurol. 173, 123–146 (1977).
    Article CAS Google Scholar
  16. Parent, A., Gravel, S. & Boucher, R. The origin of forebrain afferents to the habenula in rat, cat and monkey. Brain Res. Bull. 6, 23–38 (1981).
    Article CAS Google Scholar
  17. Herkenham, M. & Nauta, W.J. Efferent connections of the habenular nuclei in the rat. J. Comp. Neurol. 187, 19–47 (1979).
    Article CAS Google Scholar
  18. Wise, R.A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 5, 483–494 (2004).
    Article CAS Google Scholar
  19. Hikosaka, O., Nakamura, K. & Nakahara, H. Basal ganglia orient eyes to reward. J. Neurophysiol. 95, 567–584 (2006).
    Article Google Scholar
  20. Cools, R., Roberts, A.C. & Robbins, T.W. Serotoninergic regulation of emotional and behavioral control processes. Trends Cogn. Sci. 12, 31–40 (2008).
    Article Google Scholar
  21. Christoph, G.R., Leonzio, R.J. & Wilcox, K.S. Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat. J. Neurosci. 6, 613–619 (1986).
    Article CAS Google Scholar
  22. Ji, H. & Shepard, P.D. Lateral habenula stimulation inhibits rat midbrain dopamine neurons through a GABA(A) receptor–mediated mechanism. J. Neurosci. 27, 6923–6930 (2007).
    Article CAS Google Scholar
  23. Wang, R.Y. & Aghajanian, G.K. Physiological evidence for habenula as major link between forebrain and midbrain raphe. Science 197, 89–91 (1977).
    Article CAS Google Scholar
  24. Sutherland, R.J. The dorsal diencephalic conduction system: a review of the anatomy and functions of the habenular complex. Neurosci. Biobehav. Rev. 6, 1–13 (1982).
    Article CAS Google Scholar
  25. Lecourtier, L. & Kelly, P.H. A conductor hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition. Neurosci. Biobehav. Rev. 31, 658–672 (2007).
    Article CAS Google Scholar
  26. Matsumoto, M. & Hikosaka, O. Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447, 1111–1115 (2007).
    Article CAS Google Scholar
  27. Glimcher, P.W. Indeterminacy in brain and behavior. Annu. Rev. Psychol. 56, 25–56 (2005).
    Article Google Scholar
  28. Solomon, R.L. & Corbit, J.D. An opponent-process theory of motivation. I. Temporal dynamics of affect. Psychol. Rev. 81, 119–145 (1974).
    Article CAS Google Scholar
  29. Seymour, B., Singer, T. & Dolan, R. The neurobiology of punishment. Nat. Rev. Neurosci. 8, 300–311 (2007).
    Article CAS Google Scholar
  30. Schultz, W. & Dickinson, A. Neuronal coding of prediction errors. Annu. Rev. Neurosci. 23, 473–500 (2000).
    Article CAS Google Scholar
  31. Schultz, W. Predictive reward signal of dopamine neurons. J. Neurophysiol. 80, 1–27 (1998).
    Article CAS Google Scholar
  32. Nakahara, H., Itoh, H., Kawagoe, R., Takikawa, Y. & Hikosaka, O. Dopamine neurons can represent context-dependent prediction error. Neuron 41, 269–280 (2004).
    Article CAS Google Scholar
  33. Belova, M.A., Paton, J.J., Morrison, S.E. & Salzman, C.D. Expectation modulates neural responses to pleasant and aversive stimuli in primate amygdala. Neuron 55, 970–984 (2007).
    Article CAS Google Scholar
  34. Schultz, W., Dayan, P. & Montague, P.R. A neural substrate of prediction and reward. Science 275, 1593–1599 (1997).
    Article CAS Google Scholar
  35. Montague, P.R., Dayan, P. & Sejnowski, T.J. A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci. 16, 1936–1947 (1996).
    Article CAS Google Scholar
  36. Doya, K. Metalearning and neuromodulation. Neural Netw. 15, 495–506 (2002).
    Article Google Scholar
  37. Lecourtier, L., Defrancesco, A. & Moghaddam, B. Differential tonic influence of lateral habenula on prefrontal cortex and nucleus accumbens dopamine release. Eur. J. Neurosci. 27, 1755–1762 (2008).
    Article Google Scholar
  38. Yang, L.M., Hu, B., Xia, Y.H., Zhang, B.L. & Zhao, H. Lateral habenula lesions improve the behavioral response in depressed rats via increasing the serotonin level in dorsal raphe nucleus. Behav. Brain Res. 188, 84–90 (2008).
    Article Google Scholar
  39. Nakamura, K., Matsumoto, M. & Hikosaka, O. Reward-dependent modulation of neuronal activity in the primate dorsal raphe nucleus. J. Neurosci. 28, 5331–5343 (2008).
    Article CAS Google Scholar
  40. Gandhi, N.J. & Bonadonna, D.K. Temporal interactions of air-puff–evoked blinks and saccadic eye movements: insights into motor preparation. J. Neurophysiol. 93, 1718–1729 (2005).
    Article Google Scholar

Download references