Regulation of AMPA receptor extrasynaptic insertion by 4.1N, phosphorylation and palmitoylation (original) (raw)
References
Dingledine, R., Borges, K., Bowie, D. & Traynelis, S.F. The glutamate receptor ion channels. Pharmacol. Rev.51, 7–61 (1999). CASPubMed Google Scholar
Hollmann, M. & Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci.17, 31–108 (1994). ArticleCAS Google Scholar
Shepherd, J.D. & Huganir, R.L. The cell biology of synaptic plasticity: AMPA receptor trafficking. Annu. Rev. Cell Dev. Biol.23, 613–643 (2007). ArticleCAS Google Scholar
Shi, S., Hayashi, Y., Esteban, J.A. & Malinow, R. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell105, 331–343 (2001). ArticleCAS Google Scholar
Hayashi, Y. et al. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science287, 2262–2267 (2000). ArticleCAS Google Scholar
Park, M., Penick, E.C., Edwards, J.G., Kauer, J.A. & Ehlers, M.D. Recycling endosomes supply AMPA receptors for LTP. Science305, 1972–1975 (2004). ArticleCAS Google Scholar
Kim, C.H. & Lisman, J.E. A role of actin filament in synaptic transmission and long-term potentiation. J. Neurosci.19, 4314–4324 (1999). ArticleCAS Google Scholar
Krucker, T., Siggins, G.R. & Halpain, S. Dynamic actin filaments are required for stable long-term potentiation (LTP) in area CA1 of the hippocampus. Proc. Natl. Acad. Sci. USA97, 6856–6861 (2000). ArticleCAS Google Scholar
Zhou, Q., Xiao, M. & Nicoll, R.A. Contribution of cytoskeleton to the internalization of AMPA receptors. Proc. Natl. Acad. Sci. USA98, 1261–1266 (2001). ArticleCAS Google Scholar
Diakowski, W., Grzybek, M. & Sikorski, A.F. Protein 4.1, a component of the erythrocyte membrane skeleton and its related homologue proteins forming the protein 4.1/FERM superfamily. Folia Histochem. Cytobiol.44, 231–248 (2006). CASPubMed Google Scholar
Hoover, K.B. & Bryant, P.J. The genetics of the protein 4.1 family: organizers of the membrane and cytoskeleton. Curr. Opin. Cell Biol.12, 229–234 (2000). ArticleCAS Google Scholar
Chen, K., Merino, C., Sigrist, S.J. & Featherstone, D.E. The 4.1 protein coracle mediates subunit-selective anchoring of Drosophila glutamate receptors to the postsynaptic actin cytoskeleton. J. Neurosci.25, 6667–6675 (2005). ArticleCAS Google Scholar
Walensky, L.D. et al. A novel neuron-enriched homolog of the erythrocyte membrane cytoskeletal protein 4.1. J. Neurosci.19, 6457–6467 (1999). ArticleCAS Google Scholar
Coleman, S.K., Cai, C., Mottershead, D.G., Haapalahti, J.P. & Keinanen, K. Surface expression of GluR-D AMPA receptor is dependent on an interaction between its C-terminal domain and a 4.1 protein. J. Neurosci.23, 798–806 (2003). ArticleCAS Google Scholar
Shen, L., Liang, F., Walensky, L.D. & Huganir, R.L. Regulation of AMPA receptor GluR1 subunit surface expression by a 4. 1N-linked actin cytoskeletal association. J. Neurosci.20, 7932–7940 (2000). ArticleCAS Google Scholar
Ashby, M.C. et al. Removal of AMPA receptors (AMPARs) from synapses is preceded by transient endocytosis of extrasynaptic AMPARs. J. Neurosci.24, 5172–5176 (2004). ArticleCAS Google Scholar
Sekine-Aizawa, Y. & Huganir, R.L. Imaging of receptor trafficking by using alpha-bungarotoxin binding site–tagged receptors. Proc. Natl. Acad. Sci. USA101, 17114–17119 (2004). ArticleCAS Google Scholar
Thomas, G.M., Lin, D.T., Nuriya, M. & Huganir, R.L. Rapid and bi-directional regulation of AMPA receptor phosphorylation and trafficking by JNK. EMBO J.27, 361–372 (2008). ArticleCAS Google Scholar
Lin, D.T. & Huganir, R.L. PICK1 and phosphorylation of the glutamate receptor 2 (GluR2) AMPA receptor subunit regulates GluR2 recycling after NMDA receptor–induced internalization. J. Neurosci.27, 13903–13908 (2007). ArticleCAS Google Scholar
Ashby, M.C., Maier, S.R., Nishimune, A. & Henley, J.M. Lateral diffusion drives constitutive exchange of AMPA receptors at dendritic spines and is regulated by spine morphology. J. Neurosci.26, 7046–7055 (2006). ArticleCAS Google Scholar
Kopec, C.D., Li, B., Wei, W., Boehm, J. & Malinow, R. Glutamate receptor exocytosis and spine enlargement during chemically induced long-term potentiation. J. Neurosci.26, 2000–2009 (2006). ArticleCAS Google Scholar
Heine, M. et al. Surface mobility of postsynaptic AMPARs tunes synaptic transmission. Science320, 201–205 (2008). ArticleCAS Google Scholar
Ehlers, M.D., Heine, M., Groc, L., Lee, M.C. & Choquet, D. Diffusional trapping of GluR1 AMPA receptors by input-specific synaptic activity. Neuron54, 447–460 (2007). ArticleCAS Google Scholar
Bats, C., Groc, L. & Choquet, D. The interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron53, 719–734 (2007). ArticleCAS Google Scholar
Groc, L. et al. Differential activity-dependent regulation of the lateral mobilities of AMPA and NMDA receptors. Nat. Neurosci.7, 695–696 (2004). ArticleCAS Google Scholar
Groc, L., Choquet, D. & Chaouloff, F. The stress hormone corticosterone conditions AMPAR surface trafficking and synaptic potentiation. Nat. Neurosci.11, 868–870 (2008). ArticleCAS Google Scholar
Tardin, C., Cognet, L., Bats, C., Lounis, B. & Choquet, D. Direct imaging of lateral movements of AMPA receptors inside synapses. EMBO J.22, 4656–4665 (2003). ArticleCAS Google Scholar
Borgdorff, A.J. & Choquet, D. Regulation of AMPA receptor lateral movements. Nature417, 649–653 (2002). ArticleCAS Google Scholar
Miesenböck, G., De Angelis, D.A. & Rothman, J.E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature394, 192–195 (1998). Article Google Scholar
Song, I. & Huganir, R.L. Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci.25, 578–588 (2002). ArticleCAS Google Scholar
Boehm, J. et al. Synaptic incorporation of AMPA receptors during LTP is controlled by a PKC phosphorylation site on GluR1. Neuron51, 213–225 (2006). ArticleCAS Google Scholar
Hayashi, T., Rumbaugh, G. & Huganir, R.L. Differential regulation of AMPA receptor subunit trafficking by palmitoylation of two distinct sites. Neuron47, 709–723 (2005). ArticleCAS Google Scholar
Wozny, C. et al. The function of glutamatergic synapses is not perturbed by severe knockdown of 4.1N and 4.1G expression. J. Cell Sci.122, 735–744 (2009). ArticleCAS Google Scholar
Yudowski, G.A. et al. Real-time imaging of discrete exocytic events mediating surface delivery of AMPA receptors. J. Neurosci.27, 11112–11121 (2007). ArticleCAS Google Scholar
Gardner, S.M. et al. Calcium-permeable AMPA receptor plasticity is mediated by subunit-specific interactions with PICK1 and NSF. Neuron45, 903–915 (2005). ArticleCAS Google Scholar
Liu, S.J. & Cull-Candy, S.G. Subunit interaction with PICK and GRIP controls Ca2+ permeability of AMPARs at cerebellar synapses. Nat. Neurosci.8, 768–775 (2005). ArticleCAS Google Scholar
Man, H.Y., Sekine-Aizawa, Y. & Huganir, R.L. Regulation of {alpha}-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor trafficking through PKA phosphorylation of the Glu receptor 1 subunit. Proc. Natl. Acad. Sci. USA104, 3579–3584 (2007). Article Google Scholar
Steinberg, J.P. et al. Targeted in vivo mutations of the AMPA receptor subunit GluR2 and its interacting protein PICK1 eliminate cerebellar long-term depression. Neuron49, 845–860 (2006). ArticleCAS Google Scholar
Lee, H.K. et al. Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell112, 631–643 (2003). ArticleCAS Google Scholar
Chung, H.J., Steinberg, J.P., Huganir, R.L. & Linden, D.J. Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression. Science300, 1751–1755 (2003). ArticleCAS Google Scholar
Xia, J., Chung, H.J., Wihler, C., Huganir, R.L. & Linden, D.J. Cerebellar long-term depression requires PKC-regulated interactions between GluR2/3 and PDZ domain–containing proteins. Neuron28, 499–510 (2000). ArticleCAS Google Scholar
Lee, H.K., Barbarosie, M., Kameyama, K., Bear, M.F. & Huganir, R.L. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity. Nature405, 955–959 (2000). ArticleCAS Google Scholar
Chung, H.J., Xia, J., Scannevin, R.H., Zhang, X. & Huganir, R.L. Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain–containing proteins. J. Neurosci.20, 7258–7267 (2000). ArticleCAS Google Scholar
Kang, R. et al. Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation. Nature456, 904–909 (2008). ArticleCAS Google Scholar
Huang, K. & El-Husseini, A. Modulation of neuronal protein trafficking and function by palmitoylation. Curr. Opin. Neurobiol.15, 527–535 (2005). ArticleCAS Google Scholar
Washbourne, P. Greasing transmission: palmitoylation at the synapse. Neuron44, 901–902 (2004). CASPubMed Google Scholar
Rathenberg, J., Kittler, J.T. & Moss, S.J. Palmitoylation regulates the clustering and cell surface stability of GABAA receptors. Mol. Cell. Neurosci.26, 251–257 (2004). ArticleCAS Google Scholar
El-Husseini, A.-el.D. et al. Synaptic strength regulated by palmitate cycling on PSD-95. Cell108, 849–863 (2002). ArticleCAS Google Scholar
DeSouza, S., Fu, J., States, B.A. & Ziff, E.B. Differential palmitoylation directs the AMPA receptor–binding protein ABP to spines or to intracellular clusters. J. Neurosci.22, 3493–3503 (2002). ArticleCAS Google Scholar
Moffett, S. et al. Palmitoylated cysteine 341 modulates phosphorylation of the beta2-adrenergic receptor by the cAMP-dependent protein kinase. J. Biol. Chem.271, 21490–21497 (1996). ArticleCAS Google Scholar