Sip1 regulates sequential fate decisions by feedback signaling from postmitotic neurons to progenitors (original) (raw)
Williams, B.P. & Price, J. Evidence for multiple precursor cell types in the embryonic rat cerebral cortex. Neuron14, 1181–1188 (1995). ArticleCAS Google Scholar
Temple, S. The development of neural stem cells. Nature414, 112–117 (2001). ArticleCAS Google Scholar
Desai, A.R. & McConnell, S. Progressive restriction in fate potential by neural progenitors during cerebral cortical development. Development127, 2863–2872 (2000). CAS Google Scholar
Morrow, T., Song, M.-R. & Ghosh, A. Sequential specification of neurons and glia by developmentally regulated extracellular factors. Development128, 3585–3594 (2001). CASPubMed Google Scholar
Bayer, S.A. & Altman, J. Neocortical Development (Raven Press, New York, 1991).
Qian, X. et al. Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron28, 69–80 (2000). ArticleCAS Google Scholar
McConnell, S.K. Fates of visual cortical neurons in the ferret after isochronic and heterochronic transplantation. J. Neurosci.8, 945–974 (1988). ArticleCAS Google Scholar
Shen, Q. et al. The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat. Neurosci.9, 743–751 (2006). ArticleCAS Google Scholar
Barnabé-Heider, F. et al. Evidence that embryonic neurons regulate the onset of cortical gliogenesis via cardiotrophin-1. Neuron48, 253–265 (2005). Article Google Scholar
Verschueren, K. et al. SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 5′-CACCT sequences in candidate target genes. J. Biol. Chem.274, 20489–20498 (1999). ArticleCAS Google Scholar
Verstappen, G. et al. Atypical Mowat-Wilson patient confirms the importance of the novel association between ZFHX1B/SIP1 and NuRD corepressor complex. Hum. Mol. Genet.17, 1175–1183 (2008). ArticleCAS Google Scholar
van Grunsven, L.A. et al. Delta-EF1 and SIP1 are differentially expressed and have overlapping activities during Xenopus embryogenesis. Dev. Dyn.235, 1491–1500 (2006). ArticleCAS Google Scholar
Dastot-Le Moal, F. et al. ZFHX1B mutations in patients with Mowat-Wilson syndrome. Hum. Mutat.28, 313–321 (2007). ArticleCAS Google Scholar
Van de Putte, T. et al. Mice lacking ZFHX1B, the gene that codes for Smad-interacting protein- 1, reveal a role for multiple neural crest cell defects in the etiology of Hirschsprung disease-mental retardation syndrome. Am. J. Hum. Genet.72, 465–470 (2003). ArticleCAS Google Scholar
Tronche, F. et al. Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat. Genet.23, 99–103 (1999). ArticleCAS Google Scholar
Goebbels, S. et al. Genetic targeting of principal neurons in neocortex and hippocampus of _Nex_-cre mice. Genesis44, 611–621 (2006). ArticleCAS Google Scholar
Gorski, J.A. et al. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J. Neurosci.22, 6309–6314 (2002). ArticleCAS Google Scholar
Miquelajauregui, A. et al. Smad-interacting protein-1 (Zfhx1b) acts upstream of Wnt signaling in the mouse hippocampus and controls its formation. Proc. Natl. Acad. Sci. USA104, 12919–12924 (2007). ArticleCAS Google Scholar
Higashi, Y. et al. Generation of the floxed allele of the SIP1 (Smad-interacting protein 1) gene for Cre-mediated conditional knockout in the mouse. Genesis32, 82–84 (2002). ArticleCAS Google Scholar
Wu, S.-X. et al. Pyramidal neurons of upper cortical layers generated by NEX-positive progenitor cells in the subventricular zone. Proc. Natl. Acad. Sci. USA102, 17172–17177 (2005). ArticleCAS Google Scholar
Noctor, S.C., Martinez-Cerdeno, V., Ivic, L. & Kriegstein, A.R. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat. Neurosci.7, 136–144 (2004). ArticleCAS Google Scholar
Arnold, S.J. et al. The T-box transcription factor Eomes/Tbr2 regulates neurogenesis in the cortical subventricular zone. Genes Dev.22, 2479–2484 (2008). ArticleCAS Google Scholar
Hartfuss, E., Galli, R., Heins, N. & Götz, M. Characterization of CNS precursor subtypes and radial glia. Dev. Biol.229, 15–30 (2001). ArticleCAS Google Scholar
Nieto, M., Schuurmans, C., Britz, O. & Guillemot, F. Neural bHLH genes control the neuronal versus glial fate decision in cortical progenitors. Neuron29, 401–413 (2001). ArticleCAS Google Scholar
Remacle, J.E. et al. New mode of DNA binding of multi-zinc finger transcription factors: deltaEF1 family members bind with two hands to two target sites. EMBO J.18, 5073–5084 (1999). ArticleCAS Google Scholar
Huang, E.J. & Reichardt, L.F. Trk receptors: roles in neuronal signaling. Annu. Rev. Biochem.72, 609–642 (2003). ArticleCAS Google Scholar
Eswarakumar, V.P., Lax, I. & Schlessinger, J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev.16, 139–149 (2005). ArticleCAS Google Scholar
Kaplan, D.R. & Miller, F.D. Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol.10, 381–391 (2000). ArticleCAS Google Scholar
Grosskortenhaus, R., Pearson, B.J., Marusich, A. & Doe, C.Q. Regulation of temporal identity transitions in Drosophila neuroblasts. Dev. Cell8, 193–202 (2005). ArticleCAS Google Scholar
Gaspard, N. et al. An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature455, 351–357 (2008). ArticleCAS Google Scholar
Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell3, 519–532 (2008). ArticleCAS Google Scholar
Fukumitsu, H. et al. Brain-derived neurotrophic factor participates in determination of neuronal laminar fate in the developing mouse cerebral cortex. J. Neurosci.26, 13218–13230 (2006). ArticleCAS Google Scholar
Belliveau, M.J. & Cepko, C. Extrinsic and intrinsic factors control the genesis of amacrine and cone cells in the rat retina. Development126, 555–566 (1999). CASPubMed Google Scholar
Neophytou, C., Vernallis, A., Smith, A. & Raff, M. Muller cell–derived leukaemia inhibitory factor arrests rod photoreceptor differentiation at a postmitotic pre-rod stage of development. Development124, 2345–2354 (1997). CASPubMed Google Scholar
Zhang, X.M. & Yang, X. Regulation of retinal ganglion cell production by Sonic hedgehog. Development128, 943–957 (2001). CASPubMed Google Scholar
Waid, D.K. & McLoon, S. Ganglion cells influence the fate of dividing retinal cells in culture. Development125, 1059–1066 (1998). CASPubMed Google Scholar
Pearson, B.J. & Doe, C.Q. Specification of temporal identity in the developing nervous system. Annu. Rev. Cell Dev. Biol.20, 619–647 (2004). ArticleCAS Google Scholar
Bullough, W.S. L.E. Mitotic control by internal secretion: the role of the chalone-adrenalin complex. Exp. Cell Res.33, 176–194 (1964). ArticleCAS Google Scholar
Lee, S.-J. & McPherron, A.C. Myostatin and the control of skeletal muscle mass. Curr. Opin. Genet. Dev. Commentary 9, 604–607 (1999). ArticleCAS Google Scholar
Lander, A.D.G.K., Wan, F.Y., Nie, Q. & Calof, A.L. Cell lineages and the logic of proliferative control. PLoS Biol.7, e15 (2009). Article Google Scholar
Zhao, S. et al. Patterning the optic neuroepithelium by FGF signaling and Ras activation. Development128, 5051–5060 (2001). CASPubMed Google Scholar
Cinaroglu, A.O.Y., Ozdemir, A., Ozcan, F., Ergorul, C., Cayirlioglu, P., Hicks, D. & Bugra, K. Expression and possible function of fibroblast growth factor 9 (FGF9) and its cognate receptors FGFR2 and FGFR3 in postnatal and adult retina. J. Neurosci. Res.79, 329–339 (2005). ArticleCAS Google Scholar
Smith, K.M. et al. Midline radial glia translocation and corpus callosum formation require FGF signaling. Nat. Neurosci.9, 787–797 (2006). ArticleCAS Google Scholar
Barnabé-Heider, F. & Miller, F.D. Endogenously produced neurotrophins regulate survival and differentiation of cortical progenitors via distinct signaling pathways. J. Neurosci.23, 5149–5160 (2003). Article Google Scholar
Bartkowska, K., Paquin, A., Gauthier, A.S., Kaplan, D.R. & Miller, F.D. Trk signaling regulates neural precursor cell proliferation and differentiation during cortical development. Development134, 4369–4380 (2007). ArticleCAS Google Scholar
Polleux, F. & Ghosh, A. The slice overlay assay: a versatile tool to study the influence of extracellular signals on neuronal development. Sci. STKE 11 June 2002, l9.
Martynoga, B., Morrison, H., Price, D.J. & Mason, J.O. Foxg1 is required for specification of ventral telencephalon and region-specific regulation of dorsal telencephalic precursor proliferation and apoptosis. Dev. Biol.283, 113–127 (2005). ArticleCAS Google Scholar
Smyth, G. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Apple. Genet. Mol. Biol.3, 3 (2004). Google Scholar
Smyth, G.K., Michaud, J. & Scott, H.S. Use of within-array replicate spots for assessing differential expression in microarray experiments. Bioinformatics21, 2067–2075 (2005). ArticleCAS Google Scholar
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol.57, 289–300 (1995). Google Scholar