A light-gated, potassium-selective glutamate receptor for the optical inhibition of neuronal firing (original) (raw)

References

  1. Herlitze, S. & Landmesser, L.T. New optical tools for controlling neuronal activity. Curr. Opin. Neurobiol. 17, 87–94 (2007).
    Article CAS Google Scholar
  2. Zhang, F., Aravanis, A.M., Adamantidis, A., de Lecea, L. & Deisseroth, K. Circuit-breakers: optical technologies for probing neural signals and systems. Nat. Rev. Neurosci. 8, 577–581 (2007).
    Article CAS Google Scholar
  3. Ellis-Davies, G.C. Caged compounds: photorelease technology for control of cellular chemistry and physiology. Nat. Methods 4, 619–628 (2007).
    Article CAS Google Scholar
  4. Banghart, M., Borges, K., Isacoff, E., Trauner, D. & Kramer, R.H. Light-activated ion channels for remote control of neuronal firing. Nat. Neurosci. 7, 1381–1386 (2004).
    Article CAS Google Scholar
  5. Volgraf, M. et al. Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat. Chem. Biol. 2, 47–52 (2006).
    Article CAS Google Scholar
  6. Li, X. et al. Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. Proc. Natl. Acad. Sci. USA 102, 17816–17821 (2005).
    Article CAS Google Scholar
  7. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).
    Article CAS Google Scholar
  8. Chow, B.Y. et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463, 98–102 (2010).
    Article CAS Google Scholar
  9. Han, X. & Boyden, E.S. Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One 2, e299 (2007).
    Article Google Scholar
  10. Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007).
    Article CAS Google Scholar
  11. Fortin, D.L. et al. Photochemical control of endogenous ion channels and cellular excitability. Nat. Methods 5, 331–338 (2008).
    Article CAS Google Scholar
  12. Suh, G.S.B. et al. Light activation of an innate olfactory avoidance response in Drosophila. Curr. Biol. 17, 905–908 (2007).
    Article CAS Google Scholar
  13. Zhang, W., Ge, W.P. & Wang, Z.R. A toolbox for light control of Drosophila behaviors through Channelrhodopsin 2–mediated photoactivation of targeted neurons. Eur. J. Neurosci. 26, 2405–2416 (2007).
    Article Google Scholar
  14. Schroll, C. et al. Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr. Biol. 16, 1741–1747 (2006).
    Article CAS Google Scholar
  15. Franks, C.J., Murray, C., Ogden, D., O'Connor, V. & Holden-Dye, L. A comparison of electrically evoked and channel rhodopsin–evoked postsynaptic potentials in the pharyngeal system of Caenorhabditis elegans. Invert. Neurosci. 9, 43–56 (2009).
    Article CAS Google Scholar
  16. Liu, Q., Hollopeter, G. & Jorgensen, E.M. Graded synaptic transmission at the Caenorhabditis elegans neuromuscular junction. Proc. Natl. Acad. Sci. USA 106, 10823–10828 (2009).
    Article CAS Google Scholar
  17. Liewald, J.F. et al. Optogenetic analysis of synaptic function. Nat. Methods 5, 895–902 (2008).
    Article CAS Google Scholar
  18. Nagel, G. et al. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol. 15, 2279–2284 (2005).
    Article CAS Google Scholar
  19. Arrenberg, A.B., Del Bene, F. & Baier, H. Optical control of zebrafish behavior with halorhodopsin. Proc. Natl. Acad. Sci. USA 106, 17968–17973 (2009).
    Article CAS Google Scholar
  20. Douglass, A.D., Kraves, S., Deisseroth, K., Schier, A.F. & Engert, F. Escape behavior elicited by single, channelrhodopsin-2–evoked spikes in zebrafish somatosensory neurons. Curr. Biol. 18, 1133–1137 (2008).
    Article CAS Google Scholar
  21. Szobota, S. et al. Remote control of neuronal activity with a light-gated glutamate receptor. Neuron 54, 535–545 (2007).
    Article CAS Google Scholar
  22. Wyart, C. et al. Optogenetic dissection of a behavioral module in the vertebrate spinal cord. Nature 461, 407–410 (2009).
    Article CAS Google Scholar
  23. Ayling, O.G.S., Harrison, T.C., Boyd, J.D., Goroshkov, A. & Murphy, T.H. Automated light-based mapping of motor cortex by photoactivation of channelrhodopsin-2 transgenic mice. Nat. Methods 6, 219–224 (2009).
    Article CAS Google Scholar
  24. Lagali, P.S. et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat. Neurosci. 11, 667–675 (2008).
    Article CAS Google Scholar
  25. Gradinaru, V., Mogri, M., Thompson, K.R., Henderson, J.M. & Deisseroth, K. Optical deconstruction of Parkinsonian neural circuitry. Science 324, 354–359 (2009).
    Article CAS Google Scholar
  26. Zhao, S. et al. Improved expression of halorhodopsin for light-induced silencing of neuronal activity. Brain Cell Biol. 36, 141–154 (2008).
    Article CAS Google Scholar
  27. Kuner, T., Seeburg, P.H. & Guy, H.R. A common architecture for K+ channels and ionotropic glutamate receptors? Trends Neurosci. 26, 27–32 (2003).
    Article CAS Google Scholar
  28. Villmann, C., Strutz, N., Morth, T. & Hollmann, M. Investigation by ion channel domain transplantation of rat glutamate receptor subunits, orphan receptors and a putative NMDA receptor subunit. Eur. J. Neurosci. 11, 1765–1778 (1999).
    Article CAS Google Scholar
  29. Wo, Z.G. & Oswald, R.E. Unraveling the modular design of glutamate-gated ion channels. Trends Neurosci. 18, 161–168 (1995).
    Article CAS Google Scholar
  30. Wood, M.W., VanDongen, H.M. & VanDongen, A.M. Structural conservation of ion conduction pathways in K channels and glutamate receptors. Proc. Natl. Acad. Sci. USA 92, 4882–4886 (1995).
    Article CAS Google Scholar
  31. Gereau, R.W. IV & Swanson, G. The Glutamate Receptors, Vol. 1 (Humana Press, Totowa, New Jersey, 2008).
  32. Chen, G.Q., Cui, C., Mayer, M.L. & Gouaux, E. Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402, 817–821 (1999).
    Article CAS Google Scholar
  33. Hansen, K.B., Yuan, H. & Traynelis, S.F. Structural aspects of AMPA receptor activation, desensitization and deactivation. Curr. Opin. Neurobiol. 17, 281–288 (2007).
    Article CAS Google Scholar
  34. Mayer, M.L. Glutamate receptor ion channels. Curr. Opin. Neurobiol. 15, 282–288 (2005).
    Article CAS Google Scholar
  35. Mayer, M.L., Olson, R. & Gouaux, E. Mechanisms for ligand binding to GluR0 ion channels: crystal structures of the glutamate and serine complexes and a closed apo state. J. Mol. Biol. 311, 815–836 (2001).
    Article CAS Google Scholar
  36. Lee, J.H. et al. Crystal structure of the GluR0 ligand-binding core from Nostoc punctiforme in complex with L-glutamate: structural dissection of the ligand interaction and subunit interface. J. Mol. Biol. 376, 308–316 (2008).
    Article CAS Google Scholar
  37. Gorostiza, P. et al. Mechanisms of photoswitch conjugation and light activation of an ionotropic glutamate receptor. Proc. Natl. Acad. Sci. USA 104, 10865–10870 (2007).
    Article CAS Google Scholar
  38. Schmid, S.M., Kott, S., Sager, C., Huelsken, T. & Hollmann, M. The glutamate receptor subunit delta2 is capable of gating its intrinsic ion channel as revealed by ligand binding domain transplantation. Proc. Natl. Acad. Sci. USA 106, 10320–10325 (2009).
    Article CAS Google Scholar
  39. Hoffmann, J., Villmann, C., Werner, M. & Hollmann, M. Investigation via ion pore transplantation of the putative relationship between glutamate receptors and K+ channels. Mol. Cell. Neurosci. 33, 358–370 (2006).
    Article CAS Google Scholar
  40. Hoffmann, J., Gorodetskaia, A. & Hollmann, M. Ion pore properties of ionotropic glutamate receptors are modulated by a transplanted potassium channel selectivity filter. Mol. Cell. Neurosci. 33, 335–343 (2006).
    Article CAS Google Scholar
  41. Yelshansky, M.V., Sobolevsky, A.I., Jatzke, C. & Wollmuth, L.P. Block of AMPA receptor desensitization by a point mutation outside the ligand-binding domain. J. Neurosci. 24, 4728–4736 (2004).
    Article CAS Google Scholar
  42. Numano, R. et al. Nanosculpting reversed wavelength sensitivity into a photoswitchable iGluR. Proc. Natl. Acad. Sci. USA 106, 6814–6819 (2009).
    Article CAS Google Scholar
  43. Ma, D. et al. Role of ER export signals in controlling surface potassium channel numbers. Science 291, 316–319 (2001).
    Article CAS Google Scholar
  44. Scott, E.K. et al. Targeting neural circuitry in zebrafish using GAL4 enhancer trapping. Nat. Methods 4, 323–326 (2007).
    Article CAS Google Scholar
  45. Zemelman, B.V., Lee, G.A., Ng, M. & Miesenbock, G. Selective photostimulation of genetically chARGed neurons. Neuron 33, 15–22 (2002).
    Article CAS Google Scholar
  46. Airan, R.D., Thompson, K.R., Fenno, L.E., Bernstein, H. & Deisseroth, K. Temporally precise in vivo control of intracellular signaling. Nature 458, 1025–1029 (2009).
    Article CAS Google Scholar
  47. Pasternack, A. et al. Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor channels lacking the N-terminal domain. J. Biol. Chem. 277, 49662–49667 (2002).
    Article CAS Google Scholar
  48. Kotani, T., Nagayoshi, S., Urasaki, A. & Kawakami, K. Transposon-mediated gene trapping in zebrafish. Methods 39, 199–206 (2006).
    Article CAS Google Scholar
  49. Borisenko, V. & Woolley, G.A. Reversibility of conformational switching in light-sensitive peptides. J. Photochem. Photobiol. A Chem. 173, 21–28 (2005).
    Article CAS Google Scholar
  50. Bunce, N.J., Ferguson, G., Forber, C.L. & Stachnyk, G.J. Sterically hindered azobenzenes: isolation of cis isomers and kinetics of thermal cis > trans isomerization. J. Org. Chem. 52, 394–398 (1987).
    Article CAS Google Scholar

Download references