Active dendrites support efficient initiation of dendritic spikes in hippocampal CA3 pyramidal neurons (original) (raw)

References

  1. McNaughton, B.L. & Morris, R.G.M. Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci. 10, 408–415 (1987).
    Article Google Scholar
  2. Lisman, J.E. Relating hippocampal circuitry to function: recall of memory sequences by reciprocal dentate–CA3 interactions. Neuron 22, 233–242 (1999).
    Article CAS Google Scholar
  3. Nakazawa, K. et al. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297, 211–218 (2002).
    Article CAS Google Scholar
  4. Nakazawa, K., McHugh, T.J., Wilson, M.A. & Tonegawa, S. NMDA receptors, place cells and hippocampal spatial memory. Nat. Rev. Neurosci. 5, 361–372 (2004).
    Article CAS Google Scholar
  5. Marr, D. Simple memory: a theory for archicortex. Phil. Trans. R. Soc. Lond. B 262, 23–81 (1971).
    Article CAS Google Scholar
  6. Pelkey, K.A. & McBain, C.J. How to dismantle a detonator synapse. Neuron 45, 327–329 (2005).
    Article CAS Google Scholar
  7. Henze, D.A., Wittner, L. & Buzsáki, G. Single granule cells reliably discharge targets in the hippocampal CA3 network in vivo. Nat. Neurosci. 5, 790–795 (2002).
    Article CAS Google Scholar
  8. Bi, G.-Q. & Poo, M.-M. Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 18, 10464–10472 (1998).
    Article CAS Google Scholar
  9. Magee, J.C. & Johnston, D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997).
    Article CAS Google Scholar
  10. Debanne, D., Gähwiler, B.H. & Thompson, S.M. Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J. Physiol. (Lond.) 507, 237–247 (1998).
    Article CAS Google Scholar
  11. Hafting, T., Fyhn, M., Molden, S., Moser, M.B. & Moser, E.I. Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801–806 (2005).
    Article CAS Google Scholar
  12. Stuart, G.J. & Sakmann, B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367, 69–72 (1994).
    Article CAS Google Scholar
  13. Spruston, N., Schiller, Y., Stuart, G. & Sakmann, B. Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268, 297–300 (1995).
    Article CAS Google Scholar
  14. Hoffman, D.A., Magee, J.C., Colbert, C.M. & Johnston, D. K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387, 869–875 (1997).
    Article CAS Google Scholar
  15. Korngreen, A. & Sakmann, B. Voltage-gated K+ channels in layer 5 neocortical pyramidal neurones from young rats: subtypes and gradients. J. Physiol. (Lond.) 525, 621–639 (2000).
    Article CAS Google Scholar
  16. Stuart, G., Spruston, N. & Häusser, M. (eds.). Dendrites 2nd edn. (Oxford University Press, Oxford, 2007).
  17. Bischofberger, J., Engel, D., Li, L., Geiger, J.R.P. & Jonas, P. Patch-clamp recording from mossy fiber terminals in hippocampal slices. Nat. Protoc. 1, 2075–2081 (2006).
    Article CAS Google Scholar
  18. Nevian, T., Larkum, M.E., Polsky, A. & Schiller, J. Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nat. Neurosci. 10, 206–214 (2007).
    Article CAS Google Scholar
  19. Larkum, M.E., Nevian, T., Sandler, M., Polsky, A. & Schiller, J. Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325, 756–760 (2009).
    Article CAS Google Scholar
  20. Hu, H., Martina, M. & Jonas, P. Dendritic mechanisms underlying rapid synaptic activation of fast-spiking hippocampal interneurons. Science 327, 52–58 (2010).
    Article CAS Google Scholar
  21. Shu, Y., Hasenstaub, A., Duque, A., Yu, Y. & McCormick, D.A. Modulation of intracortical synaptic potentials by presynaptic somatic membrane potential. Nature 441, 761–765 (2006).
    Article CAS Google Scholar
  22. Spruston, N. & Johnston, D. Perforated patch-clamp analysis of the passive membrane properties of three classes of hippocampal neurons. J. Neurophysiol. 67, 508–529 (1992).
    Article CAS Google Scholar
  23. Colbert, C.M. & Johnston, D. Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons. J. Neurosci. 16, 6676–6686 (1996).
    Article CAS Google Scholar
  24. Meeks, J.P. & Mennerick, S. Action potential initiation and propagation in CA3 pyramidal axons. J. Neurophysiol. 97, 3460–3472 (2007).
    Article Google Scholar
  25. Traub, R.D. & Miles, R. Neuronal Networks of the Hippocampus (Cambridge University Press, Cambridge, 1991).
  26. Jaffe, D.B. & Carnevale, N.T. Passive normalization of synaptic integration influenced by dendritic architecture. J. Neurophysiol. 82, 3268–3285 (1999).
    Article CAS Google Scholar
  27. Golding, N.L. & Spruston, N. Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron 21, 1189–1200 (1998).
    Article CAS Google Scholar
  28. Kamondi, A., Acsády, L. & Buzsáki, G. Dendritic spikes are enhanced by cooperative network activity in the intact hippocampus. J. Neurosci. 18, 3919–3928 (1998).
    Article CAS Google Scholar
  29. Golding, N.L., Staff, N.P. & Spruston, N. Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418, 326–331 (2002).
    Article CAS Google Scholar
  30. Gasparini, S., Migliore, M. & Magee, J.C. On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. J. Neurosci. 24, 11046–11056 (2004).
    Article CAS Google Scholar
  31. Losonczy, A., Makara, J.K. & Magee, J.C. Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452, 436–441 (2008).
    Article CAS Google Scholar
  32. Rall, W. Core conductor theory and cable properties of neurons. in Handbook of Physiology, The Nervous System, Cellular Biology of Neurones (ed. Kandel, E.R.) 39–98 (American Physiological Society, Bethesda, Maryland, 1977).
  33. Spruston, N. Pyramidal neurons: dendritic structure and synaptic integration. Nat. Rev. Neurosci. 9, 206–221 (2008).
    Article CAS Google Scholar
  34. Krueppel, R., Remy, S. & Beck, H. Dendritic integration in hippocampal dentate granule cells. Neuron 71, 512–528 (2011).
    Article CAS Google Scholar
  35. Frick, A., Magee, J., Koester, H.J., Migliore, M. & Johnston, D. Normalization of Ca2+ signals by small oblique dendrites of CA1 pyramidal neurons. J. Neurosci. 23, 3243–3250 (2003).
    Article CAS Google Scholar
  36. Holmes, W.R. The role of dendritic diameters in maximizing the effectiveness of synaptic inputs. Brain Res. 478, 127–137 (1989).
    Article CAS Google Scholar
  37. Major, G., Larkman, A.U., Jonas, P., Sakmann, B. & Jack, J.J.B. Detailed passive cable models of whole-cell recorded CA3 pyramidal neurons in rat hippocampal slices. J. Neurosci. 14, 4613–4638 (1994).
    Article CAS Google Scholar
  38. Jarsky, T., Roxin, A., Kath, W.L. & Spruston, N. Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nat. Neurosci. 8, 1667–1676 (2005).
    Article CAS Google Scholar
  39. Softky, W. Sub-millisecond coincidence detection in active dendritic trees. Neuroscience 58, 13–41 (1994).
    Article CAS Google Scholar
  40. Poirazi, P. & Mel, B.W. Impact of active dendrites and structural plasticity on the memory capacity of neural tissue. Neuron 29, 779–796 (2001).
    Article CAS Google Scholar
  41. Kampa, B.M., Clements, J., Jonas, P. & Stuart, G.J. Kinetics of Mg2+ unblock of NMDA receptors: implications for spike timing–dependent synaptic plasticity. J. Physiol. (Lond.) 556, 337–345 (2004).
    Article CAS Google Scholar
  42. McMahon, D.B.T. & Barrionuevo, G. Short- and long-term plasticity of the perforant path synapse in hippocampal area CA3. J. Neurophysiol. 88, 528–533 (2002).
    Article Google Scholar
  43. Kobayashi, K. & Poo, M.-M. Spike train timing–dependent associative modification of hippocampal CA3 recurrent synapses by mossy fibers. Neuron 41, 445–454 (2004).
    Article CAS Google Scholar
  44. Urban, N.N., Henze, D.A. & Barrionuevo, G. Amplification of perforant-path EPSPs in CA3 pyramidal cells by LVA calcium and sodium channels. J. Neurophysiol. 80, 1558–1561 (1998).
    Article CAS Google Scholar
  45. Urban, N.N. & Barrionuevo, G. Active summation of excitatory postsynaptic potentials in hippocampal CA3 pyramidal neurons. Proc. Natl. Acad. Sci. USA 95, 11450–11455 (1998).
    Article CAS Google Scholar
  46. Davie, J.T. et al. Dendritic patch-clamp recording. Nat. Protoc. 1, 1235–1247 (2006).
    Article CAS Google Scholar
  47. Spruston, N., Jonas, P. & Sakmann, B. Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. J. Physiol. (Lond.) 482, 325–352 (1995).
    Article CAS Google Scholar
  48. Jonas, P., Major, G. & Sakmann, B. Quantal components of unitary EPSCs at the mossy fibre synapse on CA3 pyramidal cells of rat hippocampus. J. Physiol. (Lond.) 472, 615–663 (1993).
    Article CAS Google Scholar
  49. Lien, C.C. & Jonas, P. Kv3 potassium conductance is necessary and kinetically optimized for high frequency action potential generation in hippocampal interneurons. J. Neurosci. 23, 2058–2068 (2003).
    Article CAS Google Scholar
  50. Chicurel, M.E. & Harris, K.M. Three-dimensional analysis of the structure and composition of CA3 branched dendritic spines and their synaptic relationships with mossy fiber boutons in the rat hippocampus. J. Comp. Neurol. 325, 169–182 (1992).
    Article CAS Google Scholar
  51. Song, W.-J. et al. Somatodendritic depolarization-activated potassium currents in rat neostriatal cholinergic interneurons are predominantly of the A type and attributable to coexpression of Kv4.2 and Kv4.1 subunits. J. Neurosci. 18, 3124–3137 (1998).
    Article CAS Google Scholar
  52. Sakmann, B. & Neher, E. Geometric parameters of pipettes and membrane patches. in Single-Channel Recording (eds. Sakmann, B. & Neher, E.) (Plenum Press, New York, 1995).

Download references