A role for Schwann cell–derived neuregulin-1 in remyelination (original) (raw)

References

  1. Jessen, K.R. & Mirsky, R. The origin and development of glial cells in peripheral nerves. Nat. Rev. Neurosci. 6, 671–682 (2005).
    Article CAS Google Scholar
  2. Nave, K.A. Myelination and support of axonal integrity by glia. Nature 468, 244–252 (2010).
    Article CAS Google Scholar
  3. Taveggia, C., Feltri, M.L. & Wrabetz, L. Signals to promote myelin formation and repair. Nat. Rev. Neurol. 6, 276–287 (2010).
    Article Google Scholar
  4. Michailov, G.V. et al. Axonal neuregulin-1 regulates myelin sheath thickness. Science 304, 700–703 (2004).
    Article CAS Google Scholar
  5. Taveggia, C. et al. Neuregulin-1 type III determines the ensheathment fate of axons. Neuron 47, 681–694 (2005).
    Article CAS Google Scholar
  6. Nave, K.A. & Salzer, J.L. Axonal regulation of myelination by neuregulin 1. Curr. Opin. Neurobiol. 16, 492–500 (2006).
    Article CAS Google Scholar
  7. Birchmeier, C. & Nave, K.A. Neuregulin-1, a key axonal signal that drives Schwann cell growth and differentiation. Glia 56, 1491–1497 (2008).
    Article Google Scholar
  8. Falls, D.L. Neuregulins and the neuromuscular system: 10 years of answers and questions. J. Neurocytol. 32, 619–647 (2003).
    Article CAS Google Scholar
  9. Bosse, F. Extrinsic cellular and molecular mediators of peripheral axonal regeneration. Cell Tissue Res. 349, 5–14 (2012).
    Article CAS Google Scholar
  10. Atanosoki, S. et al. ErbB2 signaling in Schwann cells is mostly dispensable for maintenance of myelinated peripheral nerves and proliferation of adult Schwann cells after injury. J. Neurosci. 26, 2124–2131 (2006).
    Article Google Scholar
  11. Fricker, F.R. et al. Axonally derived neuregulin-1 is required for remyelination and regeneration after nerve injury in adulthood. J. Neurosci. 31, 3225–3233 (2011).
    Article CAS Google Scholar
  12. Fricker, F.R. & Bennett, D.L. The role of neuregulin-1 in the response to nerve injury. Future Neurol. 6, 809–822 (2011).
    Article CAS Google Scholar
  13. Sherman, D.L. & Brophy, P.J. Mechanisms of axon ensheathment and myelin growth. Nat. Rev. Neurosci. 6, 683–690 (2005).
    Article CAS Google Scholar
  14. Schröder, J.M. Altered ratio between axon diameter and myelin sheath thickness in regenerated nerve fibers. Brain Res. 45, 49–65 (1972).
    Article Google Scholar
  15. Jaegle, M. et al. The POU proteins Brn-2 and Oct-6 share important functions in Schwann cell development. Genes Dev. 17, 1380–1391 (2003).
    Article CAS Google Scholar
  16. Li, L. et al. The breast proto-oncogene, HRGalpha regulates epithelial proliferation and lobuloalveolar development in the mouse mammary gland. Oncogene 21, 4900–4907 (2002).
    Article CAS Google Scholar
  17. Fawcett, J.W. & Keynes, R.J. Peripheral nerve regeneration. Annu. Rev. Neurosci. 13, 43–60 (1990).
    Article CAS Google Scholar
  18. Welcher, A.A., Suter, U., De Leon, M., Bitler, C.M. & Shooter, E.M. Molecular approaches to nerve regeneration. Phil. Trans. R. Soc. Lond. B 331, 295–301 (1991).
    Article CAS Google Scholar
  19. Bermingham-McDonogh, O., Xu, Y.T., Marchionni, M.A. & Scherer, S.S. Neuregulin expression in PNS neurons: isoforms and regulation by target interactions. Mol. Cell. Neurosci. 10, 184–195 (1997).
    Article CAS Google Scholar
  20. Carroll, S.L., Miller, M.L., Frohnert, P.W., Kim, S.S. & Corbett, J.A. Expression of neuregulins and their putative receptors, ErbB2 and ErbB3, is induced during Wallerian degeneration. J. Neurosci. 17, 1642–1659 (1997).
    Article CAS Google Scholar
  21. Wolpowitz, D. et al. Cysteine-rich domain isoforms of the neuregulin-1 gene are required for maintenance of peripheral synapses. Neuron 25, 79–91 (2000).
    Article CAS Google Scholar
  22. Myers, R.R. et al. Inhibition of p38 MAP kinase activity enhances axonal regeneration. Exp. Neurol. 184, 606–614 (2003).
    Article CAS Google Scholar
  23. Mirsky, R. et al. Novel signals controlling embryonic Schwann cell development, myelination and dedifferentiation. J. Peripher. Nerv. Syst. 13, 122–135 (2008).
    Article Google Scholar
  24. Jessen, K.R. & Mirsky, R. Negative regulation of myelination: relevance for development, injury, and demyelinating disease. Glia 56, 1552–1565 (2008).
    Article Google Scholar
  25. Höke, A. Mechanisms of disease: what factors limit the success of peripheral nerve regeneration in humans? Nat. Clin. Pract. Neurol. 2, 448–454 (2006).
    Article Google Scholar
  26. Chen, Z.L., Yu, W.M. & Strickland, S. Peripheral regeneration. Annu. Rev. Neurosci. 30, 209–233 (2007).
    Article Google Scholar
  27. Napoli, I. et al. A central role for the ERK-signaling pathway in controlling Schwann cell plasticity and peripheral nerve regeneration in vivo. Neuron 73, 729–742 (2012).
    Article CAS Google Scholar
  28. Loeb, J.A., Khurana, T.S., Robbins, J.T., Yee, A.G. & Fischbach, G.D. Expression patterns of transmembrane and released forms of neuregulin during spinal cord and neuromuscular synapse development. Development 126, 781–791 (1999).
    CAS PubMed Google Scholar
  29. Rosenbaum, C. et al. Schwann cells express NDF and SMDF/n-ARIA mRNAs, secrete neuregulin, and show constitutive activation of erbB3 receptors: evidence for a neuregulin autocrine loop. Exp. Neurol. 148, 604–615 (1997).
    Article CAS Google Scholar
  30. Stonecypher, M.S., Chaudhury, A.R., Byer, S.J. & Carroll, S.L. Neuregulin growth factors and their ErbB receptors form a potential signaling network for schwannoma tumorigenesis. J. Neuropathol. Exp. Neurol. 65, 162–175 (2006).
    Article CAS Google Scholar
  31. Pertusa, M., Morenilla-Palao, C., Carteron, C., Viana, F. & Cabedo, H. Transcriptional control of cholesterol biosynthesis in Schwann cells by axonal neuregulin 1. J. Biol. Chem. 282, 28768–28778 (2007).
    Article CAS Google Scholar
  32. Velanac, V. et al. Bace1 processing of NRG1 type III produces a myelin-inducing signal but is not essential for the stimulation of myelination. Glia 60, 203–217 (2012).
    Article Google Scholar
  33. Spiegel, I. et al. A central role for Necl4 (SynCAM4) in Schwann cell-axon interaction and myelination. Nat. Neurosci. 10, 861–869 (2007).
    Article CAS Google Scholar
  34. Ghazvini, M. et al. A cell type-specific allele of the POU gene Oct-6 reveals Schwann cell autonomous function in nerve development and regeneration. EMBO J. 21, 4612–4620 (2002).
    Article CAS Google Scholar
  35. Brockes, J.P., Fields, K.L. & Raff, M.C. Studies on cultured rat Schwann cells. I. Establishment of purified populations from cultures of peripheral nerve. Brain Res. 165, 105–118 (1979).
    Article CAS Google Scholar
  36. Campenot, R.B. Development of sympathetic neurons in compartmentalized cultures. Il Local control of neurite growth by nerve growth factor. Dev. Biol. 93, 1–12 (1982).
    Article CAS Google Scholar
  37. Kleitman, N., Wood, P.M. & Bunge, R.P. Tissue culture methods for the study of myelination. in Culturing Nerve Cells 2nd edn. (eds., Banker G.A. & Goslin, K.) 545–594 (MIT, 1998).
  38. Inserra, M.M., Bloch, D.A. & Terris, D.J. Functional indices for sciatic, peroneal, and posterior tibial nerve lesions in the mouse. Microsurgery 18, 119–124 (1998).
    Article CAS Google Scholar

Download references