Strengthening the accumbal indirect pathway promotes resilience to compulsive cocaine use (original) (raw)

References

  1. Ersche, K.D. et al. Abnormal structure of frontostriatal brain systems is associated with aspects of impulsivity and compulsivity in cocaine dependence. Brain 134, 2013–2024 (2011).
    Article Google Scholar
  2. Volkow, N.D., Fowler, J.S., Wang, G.J., Baler, R. & Telang, F. Imaging dopamine's role in drug abuse and addiction. Neuropharmacology 56 (suppl. 1), 3–8 (2009).
    Article CAS Google Scholar
  3. Volkow, N.D. et al. Brain DA D2 receptors predict reinforcing effects of stimulants in humans: replication study. Synapse 46, 79–82 (2002).
    Article CAS Google Scholar
  4. Belin, D., Mar, A.C., Dalley, J.W., Robbins, T.W. & Everitt, B.J. High impulsivity predicts the switch to compulsive cocaine-taking. Science 320, 1352–1355 (2008).
    Article CAS Google Scholar
  5. Nader, M.A. et al. PET imaging of dopamine D2 receptors during chronic cocaine self-administration in monkeys. Nat. Neurosci. 9, 1050–1056 (2006).
    Article CAS Google Scholar
  6. Beckmann, J.S., Marusich, J.A., Gipson, C.D. & Bardo, M.T. Novelty seeking, incentive salience and acquisition of cocaine self-administration in the rat. Behav. Brain Res. 216, 159–165 (2011).
    Article CAS Google Scholar
  7. Deroche-Gamonet, V., Belin, D. & Piazza, P.V. Evidence for addiction-like behavior in the rat. Science 305, 1014–1017 (2004).
    Article CAS Google Scholar
  8. Saunders, B.T. & Robinson, T.E. Individual variation in the motivational properties of cocaine. Neuropsychopharmacology 36, 1668–1676 (2011).
    Article CAS Google Scholar
  9. Lobo, M.K. & Nestler, E.J. The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons. Front. Neuroanat. 5, 41 (2011).
    Article Google Scholar
  10. Gerfen, C.R. & Surmeier, D.J. Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci. 34, 441–466 (2011).
    Article CAS Google Scholar
  11. Kravitz, A.V. et al. Regulation of parkinsonian motor behaviors by optogenetic control of basal ganglia circuitry. Nature 466, 622–626 (2010).
    Article CAS Google Scholar
  12. Kravitz, A.V., Tye, L.D. & Kreitzer, A.C. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat. Neurosci. 15, 816–818 (2012).
    Article CAS Google Scholar
  13. Lobo, M.K. et al. Cell type–specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330, 385–390 (2010).
    Article CAS Google Scholar
  14. Durieux, P.F. et al. D2R striatopallidal neurons inhibit both locomotor and drug reward processes. Nat. Neurosci. 12, 393–395 (2009).
    Article CAS Google Scholar
  15. Ferguson, S.M. et al. Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nat. Neurosci. 14, 22–24 (2011).
    Article CAS Google Scholar
  16. Kasanetz, F. et al. Transition to addiction is associated with a persistent impairment in synaptic plasticity. Science 328, 1709–1712 (2010).
    Article CAS Google Scholar
  17. Kramer, P.F. et al. Dopamine D2 receptor overexpression alters behavior and physiology in Drd2-EGFP mice. J. Neurosci. 31, 126–132 (2011).
    Article CAS Google Scholar
  18. Dong, S., Rogan, S.C. & Roth, B.L. Directed molecular evolution of DREADDs: a generic approach to creating next-generation RASSLs. Nat. Protoc. 5, 561–573 (2010).
    Article CAS Google Scholar
  19. Alexander, G.M. et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein–coupled receptors. Neuron 63, 27–39 (2009).
    Article CAS Google Scholar
  20. Kozorovitskiy, Y., Saunders, A., Johnson, C.A., Lowell, B.B. & Sabatini, B.L. Recurrent network activity drives striatal synaptogenesis. Nature 485, 646–650 (2012).
    Article CAS Google Scholar
  21. Bello, E.P. et al. Cocaine supersensitivity and enhanced motivation for reward in mice lacking dopamine D2 autoreceptors. Nat. Neurosci. 14, 1033–1038 (2011).
    Article CAS Google Scholar
  22. Ralph, R.J. & Caine, S.B. Dopamine D1 and D2 agonist effects on prepulse inhibition and locomotion: comparison of Sprague-Dawley rats to Swiss-Webster, 129X1/SvJ, C57BL/6J and DBA/2J mice. J. Pharmacol. Exp. Ther. 312, 733–741 (2005).
    Article CAS Google Scholar
  23. Barrett, A.C., Miller, J.R., Dohrmann, J.M. & Caine, S.B. Effects of dopamine indirect agonists and selective D1-like and D2-like agonists and antagonists on cocaine self-administration and food maintained responding in rats. Neuropharmacology 47 (suppl. 1), 256–273 (2004).
    Article CAS Google Scholar
  24. Caine, S.B., Negus, S.S. & Mello, N.K. Effects of dopamine D(1-like) and D(2-like) agonists on cocaine self-administration in rhesus monkeys: rapid assessment of cocaine dose-effect functions. Psychopharmacology (Berl.) 148, 41–51 (2000).
    Article CAS Google Scholar
  25. Caine, S.B., Negus, S.S., Mello, N.K. & Bergman, J. Effects of dopamine D(1-like) and D(2-like) agonists in rats that self-administer cocaine. J. Pharmacol. Exp. Ther. 291, 353–360 (1999).
    CAS PubMed Google Scholar
  26. Dobi, A., Seabold, G.K., Christensen, C.H., Bock, R. & Alvarez, V.A. Cocaine-induced plasticity in the nucleus accumbens is cell specific and develops without prolonged withdrawal. J. Neurosci. 31, 1895–1904 (2011).
    Article CAS Google Scholar
  27. Pascoli, V., Turiault, M. & Lüscher, C. Reversal of cocaine-evoked synaptic potentiation resets drug-induced adaptive behavior. Nature 481, 71–75 (2011).
    Article Google Scholar
  28. Corbit, L.H. & Janak, P.H. Posterior dorsomedial striatum is critical for both selective instrumental and Pavlovian reward learning. Eur. J. Neurosci. 31, 1312–1321 (2010).
    Article Google Scholar
  29. Root, D.H. et al. Differential roles of ventral pallidum subregions during cocaine self-administration behaviors. J. Comp. Neurol. 521, 558–588 (2013).
    Article CAS Google Scholar
  30. Tang, X.C., McFarland, K., Cagle, S. & Kalivas, P.W. Cocaine-induced reinstatement requires endogenous stimulation of mu-opioid receptors in the ventral pallidum. J. Neurosci. 25, 4512–4520 (2005).
    Article CAS Google Scholar
  31. Torregrossa, M.M., Tang, X.C. & Kalivas, P.W. The glutamatergic projection from the prefrontal cortex to the nucleus accumbens core is required for cocaine-induced decreases in ventral pallidal GABA. Neurosci. Lett. 438, 142–145 (2008).
    Article CAS Google Scholar
  32. Thomsen, M. & Caine, S.B. Chronic intravenous drug self-administration in rats and mice. Curr. Protoc. Neurosci. 9, 9.20 (2005).
    Google Scholar
  33. Richardson, N.R. & Roberts, D.C. Progressive ratio schedules in drug self-administration studies in rats: a method to evaluate reinforcing efficacy. J. Neurosci. Methods 66, 1–11 (1996).
    Article CAS Google Scholar
  34. Giessel, A.J. & Sabatini, B.L. M1 muscarinic receptors boost synaptic potentials and calcium influx in dendritic spines by inhibiting postsynaptic SK channels. Neuron 68, 936–947 (2010).
    Article CAS Google Scholar
  35. Pologruto, T.A., Sabatini, B.L. & Svoboda, K. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. Online 2, 13 (2003).
    Article Google Scholar
  36. Napolitano, F. et al. Role of aberrant striatal dopamine D1 receptor/cAMP/protein kinase A/DARPP32 signaling in the paradoxical calming effect of amphetamine. J. Neurosci. 30, 11043–11056 (2010).
    Article CAS Google Scholar

Download references