Neuronal ensembles sufficient for recovery sleep and the sedative actions of α2 adrenergic agonists (original) (raw)
Franks, N.P. General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal. Nat. Rev. Neurosci.9, 370–386 (2008). ArticleCASPubMed Google Scholar
Rihel, J. & Schier, A.F. Sites of action of sleep and wake drugs: insights from model organisms. Curr. Opin. Neurobiol.23, 831–840 (2013). ArticleCASPubMedPubMed Central Google Scholar
Adams, R. et al. Efficacy of dexmedetomidine compared with midazolam for sedation in adult intensive care patients: a systematic review. Br. J. Anaesth.111, 703–710 (2013). ArticleCASPubMed Google Scholar
Bol, C.J.J.G., Danhof, M., Stanski, D.R. & Mandema, J.W. Pharmacokinetic-pharmacodynamic characterization of the cardiovascular, hypnotic, EEG and ventilatory responses to dexmedetomidine in the rat. J. Pharmacol. Exp. Ther.283, 1051–1058 (1997). CASPubMed Google Scholar
Seidel, W.F., Maze, M., Dement, W.C. & Edgar, D.M. Alpha-2 adrenergic modulation of sleep: time-of-day-dependent pharmacodynamic profiles of dexmedetomidine and clonidine in the rat. J. Pharmacol. Exp. Ther.275, 263–273 (1995). CASPubMed Google Scholar
MacDonald, E., Scheinin, M., Scheinin, H. & Virtanen, R. Comparison of the behavioral and neurochemical effects of the two optical enantiomers of medetomidine, a selective alpha-2-adrenoceptor agonist. J. Pharmacol. Exp. Ther.259, 848–854 (1991). CASPubMed Google Scholar
Sanders, R.D. & Maze, M. Noradrenergic trespass in anesthetic and sedative states. Anesthesiology117, 945–947 (2012). ArticlePubMed Google Scholar
Nelson, L.E. et al. The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology98, 428–436 (2003). ArticleCASPubMed Google Scholar
Lakhlani, P.P. et al. Substitution of a mutant alpha2a-adrenergic receptor via “hit and run” gene targeting reveals the role of this subtype in sedative, analgesic, and anesthetic-sparing responses in vivo. Proc. Natl. Acad. Sci. USA94, 9950–9955 (1997). ArticleCASPubMedPubMed Central Google Scholar
Aghajanian, G.K. & VanderMaelen, C.P. α2-adrenoceptor-mediated hyperpolarization of locus coeruleus neurons: intracellular studies in vivo. Science215, 1394–1396 (1982). ArticleCASPubMed Google Scholar
Correa-Sales, C., Rabin, B.C. & Maze, M. A hypnotic response to dexmedetomidine, an alpha 2 agonist, is mediated in the locus coeruleus in rats. Anesthesiology76, 948–952 (1992). ArticleCASPubMed Google Scholar
Takahashi, K., Kayama, Y., Lin, J.S. & Sakai, K. Locus coeruleus neuronal activity during the sleep-waking cycle in mice. Neuroscience169, 1115–1126 (2010). ArticleCASPubMed Google Scholar
Berridge, C.W., Schmeichel, B.E. & Espana, R.A. Noradrenergic modulation of wakefulness/arousal. Sleep Med. Rev.16, 187–197 (2012). ArticlePubMedPubMed Central Google Scholar
Carter, M.E., de Lecea, L. & Adamantidis, A. Functional wiring of hypocretin and LC-NE neurons: implications for arousal. Front. Behav. Neurosci.7, 43 (2013). ArticlePubMedPubMed Central Google Scholar
Gilsbach, R. et al. Genetic dissection of alpha2-adrenoceptor functions in adrenergic versus nonadrenergic cells. Mol. Pharmacol.75, 1160–1170 (2009). ArticleCASPubMed Google Scholar
Hu, F.Y. et al. Hypnotic hypersensitivity to volatile anesthetics and dexmedetomidine in dopamine beta-hydroxylase knockout mice. Anesthesiology117, 1006–1017 (2012). ArticleCASPubMed Google Scholar
Szymusiak, R., Gvilia, I. & McGinty, D. Hypothalamic control of sleep. Sleep Med.8, 291–301 (2007). ArticlePubMed Google Scholar
Alam, M.A., Kumar, S., McGinty, D., Alam, M.N. & Szymusiak, R. Neuronal activity in the preoptic hypothalamus during sleep deprivation and recovery sleep. J. Neurophysiol.111, 287–299 (2014). ArticleCASPubMed Google Scholar
Takahashi, K., Lin, J.S. & Sakai, K. Characterization and mapping of sleep-waking specific neurons in the basal forebrain and preoptic hypothalamus in mice. Neuroscience161, 269–292 (2009). ArticleCASPubMed Google Scholar
Sherin, J.E., Shiromani, P.J., McCarley, R.W. & Saper, C.B. Activation of ventrolateral preoptic neurons during sleep. Science271, 216–219 (1996). ArticleCASPubMed Google Scholar
Lu, J., Greco, M.A., Shiromani, P. & Saper, C.B. Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J. Neurosci.20, 3830–3842 (2000). ArticleCASPubMedPubMed Central Google Scholar
Reijmers, L.G., Perkins, B.L., Matsuo, N. & Mayford, M. Localization of a stable neural correlate of associative memory. Science317, 1230–1233 (2007). ArticleCASPubMed Google Scholar
Alexander, G.M. et al. Remote control of neuronal activity in transgenic mice expressing evolved G protein–coupled receptors. Neuron63, 27–39 (2009). ArticleCASPubMedPubMed Central Google Scholar
Stegmeier, F., Hu, G., Rickles, R.J., Hannon, G.J. & Elledge, S.J. A lentiviral microRNA-based system for single-copy polymerase II-regulated RNA interference in mammalian cells. Proc. Natl. Acad. Sci. USA102, 13212–13217 (2005). ArticleCASPubMedPubMed Central Google Scholar
Zecharia, A.Y. et al. The involvement of hypothalamic sleep pathways in general anesthesia: testing the hypothesis using the GABAA receptor beta3N265M knock-in mouse. J. Neurosci.29, 2177–2187 (2009). ArticleCASPubMedPubMed Central Google Scholar
Tan, C.M., Wilson, M.H., MacMillan, L.B., Kobilka, B.K. & Limbird, L.E. Heterozygous alpha 2A-adrenergic receptor mice unveil unique therapeutic benefits of partial agonists. Proc. Natl. Acad. Sci. USA99, 12471–12476 (2002). ArticleCASPubMedPubMed Central Google Scholar
Gong, H. et al. Activation of c-fos in GABAergic neurones in the preoptic area during sleep and in response to sleep deprivation. J. Physiol. (Lond.)556, 935–946 (2004). ArticleCAS Google Scholar
Hunter, J.C. et al. Assessment of the role of alpha2-adrenoceptor subtypes in the antinociceptive, sedative and hypothermic action of dexmedetomidine in transgenic mice. Br. J. Pharmacol.122, 1339–1344 (1997). ArticleCASPubMedPubMed Central Google Scholar
Tong, Q., Ye, C.P., Jones, J.E., Elmquist, J.K. & Lowell, B.B. Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat. Neurosci.11, 998–1000 (2008). ArticleCASPubMedPubMed Central Google Scholar
Drew, G.M., Gower, A.J. & Marriott, A.S. Alpha 2-adrenoceptors mediate clonidine-induced sedation in the rat. Br. J. Pharmacol.67, 133–141 (1979). ArticleCASPubMedPubMed Central Google Scholar
McGinty, D.J. & Sterman, M.B. Sleep suppression after basal forebrain lesions in the cat. Science160, 1253–1255 (1968). ArticleCASPubMed Google Scholar
Sterman, M.B. & Clemente, C.D. Forebrain inhibitory mechanisms: sleep patterns induced by basal forebrain stimulation in the behaving cat. Exp. Neurol.6, 103–117 (1962). ArticleCASPubMed Google Scholar
Sherin, J.E., Elmquist, J.K., Torrealba, F. & Saper, C.B. Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J. Neurosci.18, 4705–4721 (1998). ArticleCASPubMedPubMed Central Google Scholar
Saito, Y.C. et al. GABAergic neurons in the preoptic area send direct inhibitory projections to orexin neurons. Front. Neural Circuits7, 192 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Gallopin, T. et al. Identification of sleep-promoting neurons in vitro. Nature404, 992–995 (2000). ArticleCASPubMed Google Scholar
Modirrousta, M., Mainville, L. & Jones, B.E. Gabaergic neurons with alpha2-adrenergic receptors in basal forebrain and preoptic area express c-Fos during sleep. Neuroscience129, 803–810 (2004). ArticleCASPubMed Google Scholar
Brown, R.E., Basheer, R., McKenna, J.T., Strecker, R.E. & McCarley, R.W. Control of sleep and wakefulness. Physiol. Rev.92, 1087–1187 (2012). ArticleCASPubMed Google Scholar
Gelegen, C. et al. Staying awake—a genetic region that hinders alpha adrenergic receptor agonist-induced sleep. Eur. J. Neurosci.40, 2311–2319 (2014). ArticlePubMedPubMed Central Google Scholar
Murray, A.J. et al. Parvalbumin-positive CA1 interneurons are required for spatial working but not for reference memory. Nat. Neurosci.14, 297–299 (2011). ArticleCASPubMedPubMed Central Google Scholar
Tang, W. et al. Faithful expression of multiple proteins via 2A-peptide self-processing: a versatile and reliable method for manipulating brain circuits. J. Neurosci.29, 8621–8629 (2009). ArticleCASPubMedPubMed Central Google Scholar
Krashes, M.J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Invest.121, 1424–1428 (2011). ArticleCASPubMedPubMed Central Google Scholar
Klugmann, M. et al. AAV-mediated hippocampal expression of short and long Homer 1 proteins differentially affect cognition and seizure activity in adult rats. Mol. Cell. Neurosci.28, 347–360 (2005). ArticleCASPubMed Google Scholar
Mastakov, M.Y., Baer, K., Xu, R., Fitzsimons, H. & During, M.J. Combined injection of rAAV with mannitol enhances gene expression in the rat brain. Mo. Ther.3, 225–232 (2001). ArticleCAS Google Scholar
Vyssotski, A.L. et al. EEG responses to visual landmarks in flying pigeons. Curr. Biol.19, 1159–1166 (2009). ArticleCASPubMed Google Scholar
Gerashchenko, D. et al. Identification of a population of sleep-active cerebral cortex neurons. Proc. Natl. Acad. Sci. USA105, 10227–10232 (2008). ArticleCASPubMedPubMed Central Google Scholar