DNA methylation changes in plasticity genes accompany the formation and maintenance of memory (original) (raw)
Guzman-Karlsson, M.C., Meadows, J.P., Gavin, C.F., Hablitz, J.J. & Sweatt, J.D. Transcriptional and epigenetic regulation of Hebbian and non-Hebbian plasticity. Neuropharmacology80, 3–17 (2014). ArticleCAS Google Scholar
Gräff, J. & Tsai, L.-H. Histone acetylation: molecular mnemonics on the chromatin. Nat. Rev. Neurosci.14, 97–111 (2013). Article Google Scholar
Zovkic, I.B., Guzman-Karlsson, M.C. & Sweatt, J.D. Epigenetic regulation of memory formation and maintenance. Learn. Mem.20, 61–74 (2013). ArticleCAS Google Scholar
Sweatt, J.D. The emerging field of neuroepigenetics. Neuron80, 624–632 (2013). ArticleCAS Google Scholar
Lopez-Atalaya, J.P. & Barco, A. Can changes in histone acetylation contribute to memory formation? Trends Genet.30, 529–539 (2014). ArticleCAS Google Scholar
Levenson, J.M. et al. Regulation of histone acetylation during memory formation in the hippocampus. J. Biol. Chem.279, 40545–40559 (2004). ArticleCAS Google Scholar
Gupta, S. et al. Histone methylation regulates memory formation. J. Neurosci.30, 3589–3599 (2010). ArticleCAS Google Scholar
Miller, C.A. & Sweatt, J.D. Covalent modification of DNA regulates memory formation. Neuron53, 857–869 (2007). ArticleCAS Google Scholar
Miller, C.A. et al. Cortical DNA methylation maintains remote memory. Nat. Neurosci.13, 664–666 (2010). ArticleCAS Google Scholar
Strahl, B.D. & Allis, C.D. The language of covalent histone modifications. Nature403, 41–45 (2000). ArticleCAS Google Scholar
Day, J.J. & Sweatt, J.D. Epigenetic mechanisms in cognition. Neuron70, 813–829 (2011). ArticleCAS Google Scholar
Fischer, A. Epigenetic memory: the Lamarckian brain. EMBO J.33, 945–967 (2014). ArticleCAS Google Scholar
Fanselow, M.S. Factors governing one-trial contextual conditioning. Anim. Learn. Behav.18, 264–270 (1990). Article Google Scholar
Kim, J.J. & Fanselow, M.S. Modality-specific retrograde amnesia of fear. Science256, 675–677 (1992). ArticleCAS Google Scholar
Runyan, J.D., Moore, A.N. & Dash, P.K. A role for prefrontal cortex in memory storage for trace fear conditioning. J. Neurosci.24, 1288–1295 (2004). ArticleCAS Google Scholar
Einarsson, E.O. & Nader, K. Involvement of the anterior cingulate cortex in formation, consolidation, and reconsolidation of recent and remote contextual fear memory. Learn. Mem.19, 449–452 (2012). Article Google Scholar
Bonn, S. et al. Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Nat. Genet.44, 148–156 (2012). ArticleCAS Google Scholar
Bonn, S. et al. Cell type-specific chromatin immunoprecipitation from multicellular complex samples using BiTS-ChIP. Nat. Protoc.7, 978–994 (2012). ArticleCAS Google Scholar
Jiang, Y., Matevossian, A., Huang, H.-S., Straubhaar, J. & Akbarian, S. Isolation of neuronal chromatin from brain tissue. BMC Neurosci.9, 42 (2008). Article Google Scholar
Peleg, S. et al. Altered histone acetylation is associated with age-dependent memory impairment in mice. Science328, 753–756 (2010). ArticleCAS Google Scholar
Barski, A. et al. High-resolution profiling of histone methylations in the human genome. Cell129, 823–837 (2007). ArticleCAS Google Scholar
Zhou, V.W., Goren, A. & Bernstein, B.E. Charting histone modifications and the functional organization of mammalian genomes. Nat. Rev. Genet.12, 7–18 (2010). Article Google Scholar
Cahoy, J.D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci.28, 264–278 (2008). ArticleCAS Google Scholar
Ko, Y. et al. Cell type-specific genes show striking and distinct patterns of spatial expression in the mouse brain. Proc. Natl. Acad. Sci. USA110, 3095–3100 (2013). ArticleCAS Google Scholar
Guo, J.U. et al. Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat. Neurosci.14, 1345–1351 (2011). ArticleCAS Google Scholar
Guo, J.U. et al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat. Neurosci.17, 215–222 (2014). ArticleCAS Google Scholar
Lister, R. et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature462, 315–322 (2009). ArticleCAS Google Scholar
Kim, T.-K. et al. Widespread transcription at neuronal activity-regulated enhancers. Nature465, 182–187 (2010). ArticleCAS Google Scholar
Malik, A.N. et al. Genome-wide identification and characterization of functional neuronal activity-dependent enhancers. Nat. Neurosci.17, 1330–1339 (2014). ArticleCAS Google Scholar
Heintzman, N.D. et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature459, 108–112 (2009). ArticleCAS Google Scholar
Lyons, G.E., Micales, B.K., Schwarz, J., Martin, J.F. & Olson, E.N. Expression of mef2 genes in the mouse central nervous system suggests a role in neuronal maturation. J. Neurosci.15, 5727–5738 (1995). ArticleCAS Google Scholar
Gao, Z. et al. Neurod1 is essential for the survival and maturation of adult-born neurons. Nat. Neurosci.12, 1090–1092 (2009). ArticleCAS Google Scholar
Nakayama, A. et al. Role for RFX transcription factors in non-neuronal cell-specific inactivation of the microtubule-associated protein MAP1A promoter. J. Biol. Chem.278, 233–240 (2003). ArticleCAS Google Scholar
Reiprich, S. & Wegner, M. From CNS stem cells to neurons and glia: Sox for everyone. Cell Tissue Res.359, 111–124 (2015). ArticleCAS Google Scholar
Lesburguères, E. et al. Early tagging of cortical networks is required for the formation of enduring associative memory. Science331, 924–928 (2011). Article Google Scholar
Reijmers, L.G., Perkins, B.L., Matsuo, N. & Mayford, M. Localization of a stable neural correlate of associative memory. Science317, 1230–1233 (2007). ArticleCAS Google Scholar
Garner, A.R. et al. Generation of a synthetic memory trace. Science335, 1513–1516 (2012). ArticleCAS Google Scholar
Silva, A.J., Zhou, Y., Rogerson, T., Shobe, J. & Balaji, J. Molecular and cellular approaches to memory allocation in neural circuits. Science326, 391–395 (2009). ArticleCAS Google Scholar
Ramirez, S. et al. Creating a false memory in the hippocampus. Science341, 387–391 (2013). ArticleCAS Google Scholar
Park, C.S., Rehrauer, H. & Mansuy, I.M. Genome-wide analysis of H4K5 acetylation associated with fear memory in mice. BMC Genomics14, 539 (2013). ArticleCAS Google Scholar
Bero, A.W. et al. Early remodeling of the neocortex upon episodic memory encoding. Proc. Natl. Acad. Sci. USA111, 11852–11857 (2014). ArticleCAS Google Scholar
Heyward, F.D. & Sweatt, J.D. DNA methylation in memory formation: emerging insights. Neuroscientist21, 475–489 (2015). ArticleCAS Google Scholar
Shukla, S. et al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature479, 74–79 (2011). ArticleCAS Google Scholar
Fosque, B.F. et al. Neural circuits. Labeling of active neural circuits in vivo with designed calcium integrators. Science347, 755–760 (2015). ArticleCAS Google Scholar
Peng, X. et al. Statistical implications of pooling RNA samples for microarray experiments. BMC Bioinformatics4, 26 (2003). Article Google Scholar
Kendziorski, C., Irizarry, R.A., Chen, K.S., Haag, J.D. & Gould, M.N. On the utility of pooling biological samples in microarray experiments. Proc. Natl. Acad. Sci. USA102, 4252–4257 (2005). ArticleCAS Google Scholar
Kendziorski, C.M., Zhang, Y., Lan, H. & Attie, A.D. The efficiency of pooling mRNA in microarray experiments. Biostatistics4, 465–477 (2003). ArticleCAS Google Scholar
Egelhofer, T.A. et al. An assessment of histone-modification antibody quality. Nat. Struct. Mol. Biol.18, 91–93 (2011). ArticleCAS Google Scholar
Proudhon, C. et al. Protection against de novo methylation is instrumental in maintaining parent-of-origin methylation inherited from the gametes. Mol. Cell47, 909–920 (2012). ArticleCAS Google Scholar
Bessa, J. et al. Zebrafish enhancer detection (ZED) vector: a new tool to facilitate transgenesis and the functional analysis of cis-regulatory regions in zebrafish. Dev. Dyn.238, 2409–2417 (2009). ArticleCAS Google Scholar
Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B. & Schilling, T.F. Stages of embryonic development of the zebrafish. Dev. Dyn.203, 253–310 (1995). ArticleCAS Google Scholar
Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics25, 2078–2079 (2009). Article Google Scholar
Lienhard, M., Grimm, C., Morkel, M., Herwig, R. & Chavez, L. MEDIPS: genome-wide differential coverage analysis of sequencing data derived from DNA enrichment experiments. Bioinformatics30, 284–286 (2014). ArticleCAS Google Scholar
Capece, V. et al. Oasis: online analysis of small RNA deep sequencing data. Bioinformatics31, 2205–2207 (2015). ArticleCAS Google Scholar
Landt, S.G. et al. ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res.22, 1813–1831 (2012). ArticleCAS Google Scholar
Salzberg, S.L. & Langmead, B. Fast gapped-read alignment with Bowtie 2. Nat. Methods9, 357–359 (2012). Article Google Scholar
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics29, 15–21 (2013). ArticleCAS Google Scholar
Shen, L., Shao, N., Liu, X. & Nestler, E. ngs.plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases. BMC Genomics15, 284 (2014). Article Google Scholar
Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15, 550 (2014). Article Google Scholar
Wang, J., Duncan, D., Shi, Z. & Zhang, B. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): update 2013. Nucleic Acids Res.41, W77–W83 (2013). Article Google Scholar
Rajagopal, N. et al. RFECS: a random-forest based algorithm for enhancer identification from chromatin state. PLoS Comput. Biol.9, e1002968 (2013). ArticleCAS Google Scholar
Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics26, 841–842 (2010). ArticleCAS Google Scholar
Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol.9, R137 (2008). Article Google Scholar
Song, Q. & Smith, A.D. Identifying dispersed epigenomic domains from ChIP-Seq data. Bioinformatics27, 870–871 (2011). ArticleCAS Google Scholar
Anders, S., Reyes, A. & Huber, W. Detecting differential usage of exons from RNA-seq data. Genome Res.22, 2008–2017 (2012). ArticleCAS Google Scholar