Oldenburg, I.A. & Sabatini, B.L. Antagonistic but not symmetric regulation of primary motor cortex by basal ganglia direct and indirect pathways. Neuron86, 1174–1181 (2015). ArticleCASPubMedPubMed Central Google Scholar
Difiglia, M., Pasik, P. & Pasik, T. Early postnatal development of the monkey neostriatum: a Golgi and ultrastructural study. J. Comp. Neurol.190, 303–331 (1980). ArticleCASPubMed Google Scholar
Levine, M.S., Fisher, R.S., Hull, C.D. & Buchwald, N.A. Postnatal development of identified medium-sized caudate spiny neurons in the cat. Brain Res.389, 47–62 (1986). ArticleCASPubMed Google Scholar
Tepper, J.M., Sharpe, N.A., Koós, T.Z. & Trent, F. Postnatal development of the rat neostriatum: electrophysiological, light- and electron-microscopic studies. Dev. Neurosci.20, 125–145 (1998). ArticleCASPubMed Google Scholar
Langen, M., Durston, S., Staal, W.G., Palmen, S.J.M.C. & van Engeland, H. Caudate nucleus is enlarged in high-functioning medication-naive subjects with autism. Biol. Psychiatry62, 262–266 (2007). ArticlePubMed Google Scholar
Wolff, J.J., Hazlett, H.C., Lightbody, A.A., Reiss, A.L. & Piven, J. Repetitive and self-injurious behaviors: associations with caudate volume in autism and fragile X syndrome. J. Neurodev. Disord.5, 12 (2013). ArticlePubMedPubMed Central Google Scholar
Langen, M. et al. Changes in the developmental trajectories of striatum in autism. Biol. Psychiatry66, 327–333 (2009). ArticlePubMed Google Scholar
Langen, M. et al. Changes in the development of striatum are involved in repetitive behavior in autism. Biol. Psychiatry76, 405–411 (2014). ArticlePubMed Google Scholar
DeLong, M. & Wichmann, T. Changing views of basal ganglia circuits and circuit disorders. Clin. EEG Neurosci.41, 61–67 (2010). ArticlePubMedPubMed Central Google Scholar
Abrahams, B.S. & Geschwind, D.H. Advances in autism genetics: on the threshold of a new neurobiology. Nat. Rev. Genet.9, 341–355 (2008). ArticleCASPubMedPubMed Central Google Scholar
Durand, C.M. et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat. Genet.39, 25–27 (2007). ArticleCASPubMed Google Scholar
Gauthier, J. et al. Novel de novo SHANK3 mutation in autistic patients. Am. J. Med. Genet. B. Neuropsychiatr. Genet.150B, 421–424 (2009). ArticleCASPubMed Google Scholar
Roussignol, G. et al. Shank expression is sufficient to induce functional dendritic spine synapses in aspiny neurons. J. Neurosci.25, 3560–3570 (2005). ArticleCASPubMedPubMed Central Google Scholar
Arons, M.H. et al. Autism-associated mutations in ProSAP2/Shank3 impair synaptic transmission and neurexin-neuroligin-mediated transsynaptic signaling. J. Neurosci.32, 14966–14978 (2012). ArticleCASPubMedPubMed Central Google Scholar
Verpelli, C. et al. Importance of Shank3 protein in regulating metabotropic glutamate receptor 5 (mGluR5) expression and signaling at synapses. J. Biol. Chem.286, 34839–34850 (2011). ArticleCASPubMedPubMed Central Google Scholar
Bozdagi, O. et al. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction and social communication. Mol. Autism1, 15 (2010). ArticleCASPubMedPubMed Central Google Scholar
Yang, M. et al. Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J. Neurosci.32, 6525–6541 (2012). ArticleCASPubMedPubMed Central Google Scholar
Wang, X. et al. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum. Mol. Genet.20, 3093–3108 (2011). ArticleCASPubMedPubMed Central Google Scholar
Harris, J.A. et al. Anatomical characterization of Cre driver mice for neural circuit mapping and manipulation. Front. Neural Circuits8, 76 (2014). ArticlePubMedPubMed Central Google Scholar
Petralia, R.S. et al. Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses. Nat. Neurosci.2, 31–36 (1999). ArticleCASPubMed Google Scholar
Busetto, G., Higley, M.J. & Sabatini, B.L. Developmental presence and disappearance of postsynaptically silent synapses on dendritic spines of rat layer 2/3 pyramidal neurons. J. Physiol. (Lond.)586, 1519–1527 (2008). ArticleCAS Google Scholar
Khazipov, R. et al. Early motor activity drives spindle bursts in the developing somatosensory cortex. Nature432, 758–761 (2004). ArticleCASPubMed Google Scholar
Carter, A.G., Soler-Llavina, G.J. & Sabatini, B.L. Timing and location of synaptic inputs determine modes of subthreshold integration in striatal medium spiny neurons. J. Neurosci.27, 8967–8977 (2007). ArticleCASPubMedPubMed Central Google Scholar
Choi, S. & Lovinger, D.M. Decreased probability of neurotransmitter release underlies striatal long-term depression and postnatal development of corticostriatal synapses. Proc. Natl. Acad. Sci. USA94, 2665–2670 (1997). ArticleCASPubMedPubMed Central Google Scholar
Moody, W.J. & Bosma, M.M. Ion channel development, spontaneous activity, and activity-dependent development in nerve and muscle cells. Physiol. Rev.85, 883–941 (2005). ArticleCASPubMed Google Scholar
Kilb, W., Kirischuk, S. & Luhmann, H.J. Electrical activity patterns and the functional maturation of the neocortex. Eur. J. Neurosci.34, 1677–1686 (2011). ArticlePubMed Google Scholar
Etherington, S.J. & Williams, S.R. Postnatal development of intrinsic and synaptic properties transforms signaling in the layer 5 excitatory neural network of the visual cortex. J. Neurosci.31, 9526–9537 (2011). ArticleCASPubMedPubMed Central Google Scholar
Gertler, T.S., Chan, C.S. & Surmeier, D.J. Dichotomous anatomical properties of adult striatal medium spiny neurons. J. Neurosci.28, 10814–10824 (2008). ArticleCASPubMedPubMed Central Google Scholar
Kirkby, L.A., Sack, G.S., Firl, A. & Feller, M.B. A role for correlated spontaneous activity in the assembly of neural circuits. Neuron80, 1129–1144 (2013). ArticleCASPubMedPubMed Central Google Scholar
Grabrucker, A.M. et al. Concerted action of zinc and ProSAP/Shank in synaptogenesis and synapse maturation. EMBO J.30, 569–581 (2011). ArticleCASPubMedPubMed Central Google Scholar
Gogolla, N., Takesian, A.E., Feng, G., Fagiolini, M. & Hensch, T.K. Sensory integration in mouse insular cortex reflects GABA circuit maturation. Neuron83, 894–905 (2014). ArticleCASPubMedPubMed Central Google Scholar
Martin, L.J. & Cork, L.C. The non-human primate striatum undergoes marked prolonged remodeling during postnatal development. Front. Cell. Neurosci.8, 294 (2014). PubMedPubMed Central Google Scholar
Lewine, J.D. et al. Magnetoencephalographic patterns of epileptiform activity in children with regressive autism spectrum disorders. Pediatrics104, 405–418 (1999). ArticleCASPubMed Google Scholar
Gonçalves, J.T., Anstey, J.E., Golshani, P. & Portera-Cailliau, C. Circuit level defects in the developing neocortex of Fragile X mice. Nat. Neurosci.16, 903–909 (2013). ArticlePubMedPubMed CentralCAS Google Scholar
Bateup, H.S. et al. Excitatory/inhibitory synaptic imbalance leads to hippocampal hyperexcitability in mouse models of tuberous sclerosis. Neuron78, 510–522 (2013). ArticleCASPubMedPubMed Central Google Scholar
Peñagarikano, O. et al. Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell147, 235–246 (2011). ArticlePubMedPubMed CentralCAS Google Scholar
Han, S. et al. Autistic-like behaviour in Scn1a+/− mice and rescue by enhanced GABA-mediated neurotransmission. Nature489, 385–390 (2012). ArticleCASPubMedPubMed Central Google Scholar
Wolff, J.J. et al. Longitudinal patterns of repetitive behavior in toddlers with autism. J. Child Psychol. Psychiatry55, 945–953 (2014). ArticlePubMedPubMed Central Google Scholar
Goldman, S. et al. Motor stereotypies in children with autism and other developmental disorders. Dev. Med. Child Neurol.51, 30–38 (2009). ArticlePubMed Google Scholar
Goldman, S. & Greene, P.E. Stereotypies in autism: a video demonstration of their clinical variability. Front. Integr. Neurosci.6, 121 (2012). PubMed Google Scholar
Harris, K.M., Mahone, E.M. & Singer, H.S. Nonautistic motor stereotypies: clinical features and longitudinal follow-up. Pediatr. Neurol.38, 267–272 (2008). ArticlePubMed Google Scholar
Legéndy, C.R. & Salcman, M. Bursts and recurrences of bursts in the spike trains of spontaneously active striate cortex neurons. J. Neurophysiol.53, 926–939 (1985). ArticlePubMed Google Scholar