Hypothalamic arcuate nucleus tyrosine hydroxylase neurons play orexigenic role in energy homeostasis (original) (raw)
Flier, J.S. Obesity wars: molecular progress confronts an expanding epidemic. Cell116, 337–350 (2004). ArticleCASPubMed Google Scholar
Schwartz, M.W., Woods, S.C., Porte, D. Jr., Seeley, R.J. & Baskin, D.G. Central nervous system control of food intake. Nature404, 661–671 (2000). ArticleCASPubMed Google Scholar
Grill, H.J., Ginsberg, A.B., Seeley, R.J. & Kaplan, J.M. Brainstem application of melanocortin receptor ligands produces long-lasting effects on feeding and body weight. J. Neurosci.18, 10128–10135 (1998). ArticleCASPubMedPubMed Central Google Scholar
Saper, C.B., Chou, T.C. & Elmquist, J.K. The need to feed: homeostatic and hedonic control of eating. Neuron36, 199–211 (2002). ArticleCASPubMed Google Scholar
Balthasar, N. et al. Divergence of melanocortin pathways in the control of food intake and energy expenditure. Cell123, 493–505 (2005). ArticleCASPubMed Google Scholar
Shah, B.P. et al. MC4R-expressing glutamatergic neurons in the paraventricular hypothalamus regulate feeding and are synaptically connected to the parabrachial nucleus. Proc. Natl. Acad. Sci. USA111, 13193–13198 (2014). ArticleCASPubMedPubMed Central Google Scholar
Cowley, M.A. et al. Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature411, 480–484 (2001). ArticleCASPubMed Google Scholar
Tong, Q., Ye, C.P., Jones, J.E., Elmquist, J.K. & Lowell, B.B. Synaptic release of GABA by AgRP neurons is required for normal regulation of energy balance. Nat. Neurosci.11, 998–1000 (2008). ArticleCASPubMedPubMed Central Google Scholar
Aponte, Y., Atasoy, D. & Sternson, S.M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat. Neurosci.14, 351–355 (2011). ArticleCASPubMed Google Scholar
Luquet, S., Perez, F.A., Hnasko, T.S. & Palmiter, R.D. NPY/AgRP neurons are essential for feeding in adult mice but can be ablated in neonates. Science310, 683–685 (2005). ArticleCASPubMed Google Scholar
Baldo, B.A. & Kelley, A.E. Discrete neurochemical coding of distinguishable motivational processes: insights from nucleus accumbens control of feeding. Psychopharmacology (Berl.)191, 439–459 (2007). ArticleCAS Google Scholar
Palmiter, R.D. Is dopamine a physiologically relevant mediator of feeding behavior? Trends Neurosci.30, 375–381 (2007). ArticleCASPubMed Google Scholar
Wise, R.A. Role of brain dopamine in food reward and reinforcement. Phil. Trans. R. Soc. Lond. B361, 1149–1158 (2006). ArticleCAS Google Scholar
Zhang, X. & van den Pol, A.N. Dopamine/tyrosine hydroxylase neurons of the hypothalamic arcuate nucleus release GABA, communicate with dopaminergic and other arcuate neurons, and respond to dynorphin, met-enkephalin, and oxytocin. J. Neurosci.35, 14966–14982 (2015). ArticleCASPubMedPubMed Central Google Scholar
Lin, J.Y., Lin, M.Z., Steinbach, P. & Tsien, R.Y. Characterization of engineered channelrhodopsin variants with improved properties and kinetics. Biophys. J.96, 1803–1814 (2009). ArticleCASPubMedPubMed Central Google Scholar
Zoli, M., Agnati, L.F., Tinner, B., Steinbusch, H.W. & Fuxe, K. Distribution of dopamine-immunoreactive neurons and their relationships to transmitter and hypothalamic hormone-immunoreactive neuronal systems in the rat mediobasal hypothalamus. A morphometric and microdensitometric analysis. J. Chem. Neuroanat.6, 293–310 (1993). ArticleCASPubMed Google Scholar
Everitt, B.J., Hökfelt, T., Wu, J.Y. & Goldstein, M. Coexistence of tyrosine hydroxylase-like and gamma-aminobutyric acid-like immunoreactivities in neurons of the arcuate nucleus. Neuroendocrinology39, 189–191 (1984). ArticleCASPubMed Google Scholar
Gonon, F.G. Nonlinear relationship between impulse flow and dopamine released by rat midbrain dopaminergic neurons as studied by in vivo electrochemistry. Neuroscience24, 19–28 (1988). ArticleCASPubMed Google Scholar
Taylor, I.M., Ilitchev, A.I. & Michael, A.C. Restricted diffusion of dopamine in the rat dorsal striatum. ACS Chem. Neurosci.4, 870–878 (2013). ArticleCASPubMedPubMed Central Google Scholar
Fitzgerald, P. & Dinan, T.G. Prolactin and dopamine: what is the connection? A review article. J. Psychopharmacol.22 (Suppl.): 12–19 (2008). ArticlePubMed Google Scholar
Scott, N., Prigge, M., Yizhar, O. & Kimchi, T. A sexually dimorphic hypothalamic circuit controls maternal care and oxytocin secretion. Nature525, 519–522 (2015). ArticleCASPubMed Google Scholar
Belousov, A.B. & van den Pol, A.N. Dopamine inhibition: enhancement of GABA activity and potassium channel activation in hypothalamic and arcuate nucleus neurons. J. Neurophysiol.78, 674–688 (1997). ArticleCASPubMed Google Scholar
Romero-Fernandez, W. et al. Dopamine D1 and D2 receptor immunoreactivities in the arcuate-median eminence complex and their link to the tubero-infundibular dopamine neurons. Eur. J. Histochem.58, 2400 (2014). ArticleCASPubMedPubMed Central Google Scholar
Liu, T. et al. Fasting activation of AgRP neurons requires NMDA receptors and involves spinogenesis and increased excitatory tone. Neuron73, 511–522 (2012). ArticlePubMedPubMed CentralCAS Google Scholar
Yan, C. et al. Apolipoprotein A-IV inhibits AgRP/NPY neurons and activates POMC neurons in the arcuate nucleus. Neuroendocrinologyhttp://dx.doi.org/10.1159/000439436 (2016).
Groessl, F., Jeong, J.H., Talmage, D.A., Role, L.W. & Jo, Y.H. Overnight fasting regulates inhibitory tone to cholinergic neurons of the dorsomedial nucleus of the hypothalamus. PLoS One8, e60828 (2013). ArticleCASPubMedPubMed Central Google Scholar
Kojima, M. et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature402, 656–660 (1999). ArticleCASPubMed Google Scholar
Tschöp, M., Smiley, D.L. & Heiman, M.L. Ghrelin induces adiposity in rodents. Nature407, 908–913 (2000). ArticlePubMed Google Scholar
Lyons, D.J., Horjales-Araujo, E. & Broberger, C. Synchronized network oscillations in rat tuberoinfundibular dopamine neurons: switch to tonic discharge by thyrotropin-releasing hormone. Neuron65, 217–229 (2010). ArticleCASPubMed Google Scholar
van den Pol, A.N. & Cassidy, J.R. The hypothalamic arcuate nucleus of rat—a quantitative Golgi analysis. J. Comp. Neurol.204, 65–98 (1982). ArticleCASPubMed Google Scholar
Matera, C. & Wardlaw, S.L. Dopamine and sex steroid regulation of POMC gene expression in the hypothalamus. Neuroendocrinology58, 493–500 (1993). ArticleCASPubMed Google Scholar
Kobayashi, M. et al. Simultaneous absence of dopamine D1 and D2 receptor-mediated signaling is lethal in mice. Proc. Natl. Acad. Sci. USA101, 11465–11470 (2004). ArticleCASPubMedPubMed Central Google Scholar
Broadwell, R.D. & Brightman, M.W. Entry of peroxidase into neurons of the central and peripheral nervous systems from extracerebral and cerebral blood. J. Comp. Neurol.166, 257–283 (1976). ArticleCASPubMed Google Scholar
Abizaid, A. et al. Ghrelin modulates the activity and synaptic input organization of midbrain dopamine neurons while promoting appetite. J. Clin. Invest.116, 3229–3239 (2006). ArticleCASPubMedPubMed Central Google Scholar
Naleid, A.M., Grace, M.K., Cummings, D.E. & Levine, A.S. Ghrelin induces feeding in the mesolimbic reward pathway between the ventral tegmental area and the nucleus accumbens. Peptides26, 2274–2279 (2005). ArticleCASPubMed Google Scholar
Everitt, B.J. et al. The hypothalamic arcuate nucleus-median eminence complex: immunohistochemistry of transmitters, peptides and DARPP-32 with special reference to coexistence in dopamine neurons. Brain Res.396, 97–155 (1986). ArticleCASPubMed Google Scholar
Meister, B. et al. Coexistence of tyrosine hydroxylase and growth hormone-releasing factor in a subpopulation of tubero-infundibular neurons of the rat. Neuroendocrinology42, 237–247 (1986). ArticleCASPubMed Google Scholar
Zhan, C. et al. Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J. Neurosci.33, 3624–3632 (2013). ArticleCASPubMedPubMed Central Google Scholar
Savitt, J.M., Jang, S.S., Mu, W., Dawson, V.L. & Dawson, T.M. Bcl-x is required for proper development of the mouse substantia nigra. J. Neurosci.25, 6721–6728 (2005). ArticleCASPubMedPubMed Central Google Scholar
van den Pol, A.N. et al. Neuromedin B and gastrin-releasing peptide excite arcuate nucleus neuropeptide Y neurons in a novel transgenic mouse expressing strong Renilla green fluorescent protein in NPY neurons. J. Neurosci.29, 4622–4639 (2009). ArticleCASPubMedPubMed Central Google Scholar
van den Pol, A.N., Herbst, R.S. & Powell, J.F. Tyrosine hydroxylase-immunoreactive neurons of the hypothalamus: a light and electron microscopic study. Neuroscience13, 1117–1156 (1984). ArticleCASPubMed Google Scholar