GABAA receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein Plic-1 (original) (raw)

References

  1. Macdonald, R. L. & Olsen, R. W. GABAA receptor channels. Annu. Rev. Neurosci. 17, 569–602 (1994).
    Article CAS PubMed Google Scholar
  2. Rabow, L. E., Russek, S. J. & Farb, D. H. From ion currents to genomic analysis: recent advances in GABAA receptor research. Synapse 21, 189–274 (1995).
    Article CAS PubMed Google Scholar
  3. Davies, P. A., Hanna, M. C., Hales, T. G. & Kirkness, E. F. Insensitivity to anaesthetic agents conferred by a class of GABAA receptor subunit. Nature 385, 820–823 (1997).
    Article CAS PubMed Google Scholar
  4. Bonnert, T. P. et al. Theta, a novel γ-aminobutyric acid type A receptor subunit. Proc. Natl. Acad. Sci. USA 96, 9891–9896 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  5. Unwin, N. Neurotransmitter action: opening of ligand-gated ion channels. Cell Suppl. 72, 31–41 (1993).
    Google Scholar
  6. Essrich, C., Lorez, M., Benson, J. A., Fritschy, J. M. & Luscher, B. Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin. Nat. Neurosci. 1, 563–571 (1998).
    Article CAS PubMed Google Scholar
  7. Kneussel, M. et al. Loss of postsynaptic GABAA receptor clustering in gephyrin-deficient mice. J. Neurosci. 19, 9289–9297 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  8. Feng, G. et al. Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science 282, 1321–1324 (1998).
    Article CAS PubMed Google Scholar
  9. Kittler, J. T. et al. The subcellular distribution of GABARAP and its ability to interact with NSF suggest a role for this protein in the intracellular transport of GABAA receptors. Mol. Cell Neurosci. 18, 13–25 (2001).
    Article CAS PubMed Google Scholar
  10. Wang, H. B., Bedford, F. K., Brandon, N. J., Moss, S. J. & Olsen, R. W. GABAA-receptor-associated protein links GABAA receptors and the cytoskeleton. Nature 397, 69–72 (1999).
    Article CAS PubMed Google Scholar
  11. Wan Q, et al. Recruitment of functional GABAA receptors to postsynaptic domains by insulin. Nature 388, 686–689 (1997).
    Article CAS PubMed Google Scholar
  12. Nusser, Z., Hajos, N., Somogyi, P. & Mody, I. Increased number of synaptic GABAA receptors underlies potentiation at hippocampal inhibitory. Nature 395, 172–177 (1998).
    Article CAS PubMed Google Scholar
  13. Nusser, Z., Cull-Candy, S. & Farrant, M. Differences in synaptic GABAA receptor number underlie variation in GABA mini amplitude. Neuron 19, 697–709 (1997).
    Article CAS PubMed Google Scholar
  14. Moss, S. J. & Smart, T. G. Constructing inhibitory synapses. Nat. Rev. Neurosci. 2, 241–250 (2001).
    Article CAS Google Scholar
  15. Connolly, C. N. et al. Subcellular localization and endocytosis of homomeric γ2 subunit splice variants of γ-aminobutyric acid type A receptors. Mol. Cell Neurosci. 13, 259–271 (1999).
    Article CAS PubMed Google Scholar
  16. Connolly, C. N. et al. Cell surface stability of γ-aminobutyric acid type A receptors. Dependence on protein kinase C activity and subunit composition. J. Biol. Chem. 274, 36565–36572 (1999).
    Article CAS PubMed Google Scholar
  17. Kittler, J. T. et al. Constitutive endocytosis of GABAA receptors by an association with the adaptin AP2 complex modulates inhibitory synaptic currents in hippocampal neurons. J. Neurosci. 20, 7972–7977 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  18. Kittler, J. T. et al. Analysis of GABAA receptor assembly in mammalian cell lines and hippocampal neurons using γ2 subunit green fluorescent protein chimeras. Mol. Cell Neurosci. 16, 440–452 (2000).
    Article CAS PubMed Google Scholar
  19. Marsh, M. & McMahon, H. T. The structural era of endocytosis. Science 285, 215–220 (1999).
    Article CAS PubMed Google Scholar
  20. Wu, A. L., Wang, J., Zheleznyak, A. & Brown, E. J. Ubiquitin-related proteins regulate interaction of vimentin intermediate filaments with the plasma membrane. Mol. Cell 4, 619–625 (1999).
    Article CAS PubMed Google Scholar
  21. Kleijnen, M. F. et al. The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome. Mol. Cell 6, 409–401 (2000).
    Article CAS PubMed Google Scholar
  22. Field., S. & Song, O. A novel genetic system to detect protein–protein interactions. Nature 340, 245–246 (1989).
    Article Google Scholar
  23. Dong, H. et al. GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 386, 279–284 (1997).
    Article CAS PubMed Google Scholar
  24. Funakoshi, M., Geley, S., Hunt, T., Nishimoto, T. & Kobayashi, H. Identification of XDRP1; a Xenopus protein related to yeast Dsk2p binds to the N-terminus of cyclin A and inhibits its degradation. EMBO J. 18, 5009–5018 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  25. Jentsch, S. & Pyrowolakis, G. Ubiquitin and its kin: how close are the family ties? Trends Cell Biol. 10, 335–341 (2000).
    Article CAS PubMed Google Scholar
  26. Hofmann, K. & Bucher, P. The UBA domain: a sequence motif present in multiple enzyme classes of the ubiquitination pathway. Trends Biochem. Sci. 21, 172–173 (1996).
    Article CAS PubMed Google Scholar
  27. Hanley, J. G., Koulen, P., Bedford, F., Gordon-Weeks, P. R. & Moss, S. J. The protein MAP-1B links GABAC receptors to the cytoskeleton at retinal synapses. Nature 397, 66–90 (1999).
    Article CAS PubMed Google Scholar
  28. Smith, D. B. & Johnson, K. S. Single step purification of polypeptides expressed in E. Coli as fusions with glutathione S-transferase. Gene 67, 31–40 (1988).
    Article CAS PubMed Google Scholar
  29. Benke, D., Fritschy, J. M., Trzeciak, A., Bannwarth, W. & Mohler, H. Distribution, prevalence, and drug binding profile of gamma-aminobutyric acid type A receptor subtypes differing in the beta-subunit variant. J. Biol. Chem. 269, 27100–27107 (1994).
    CAS PubMed Google Scholar
  30. Wooltorton, J. R., Moss, S. J. & Smart, T. G. Pharmacological and physiological characterization of murine homomeric β3 GABAA receptors. Eur. J. Neurosci. 9, 2225–2235 (1997).
    Article CAS PubMed Google Scholar
  31. Connolly, C. N., McDonald, B. M., Krishek, B. J., Smart, T. G. & Moss, S. J. Assembly and cell surface expression of heteromeric and homomeric GABAA receptors. J. Biol. Chem. 271, 89–97 (1996).
    Article CAS PubMed Google Scholar
  32. Todd, A. J., Watt, C., Spike, R. C. & Sieghart, W. Co-localization of GABA, glycine, and their receptors at synapses in the rat spinal cord. J. Neurosci. 16, 974–982 (1996).
    Article CAS PubMed PubMed Central Google Scholar
  33. Gardiol, A., Racca, C. & Triller, A. Dendritic and postsynaptic protein synthetic machinery. J. Neurosci. 19, 168–179 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  34. Noel, J. et al. Surface expression of AMPA receptors in hippocampal neurons is regulated by a NSF-dependent mechanism. Neuron 23, 365–376 (1999).
    Article CAS PubMed Google Scholar
  35. Williams, E. J. et al. Selective inhibition of growth factor-stimulated mitogenesis by a cell-permeable Grb2-binding peptide. J. Biol. Chem. 272, 22349–22354 (1997).
    Article CAS PubMed Google Scholar
  36. Taylor, P. M. et al. Identification of amino acid residues within GABAA receptor β subunits that mediate both homomeric and heteromeric receptor expression. J. Neurosci. 19, 6360–6371 (1999).
    Article CAS PubMed PubMed Central Google Scholar
  37. Taylor, P. M. et al. Identification of residues within GABAA receptor alpha subunits that mediate specific assembly with receptor beta subunits. J. Neurosci. 20, 1297–1306 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  38. Garner, C. C., Nash, J. & Huganir, R. L. PDZ domains in synapse assembly and signaling. Trends Cell Biol. 10, 274–280 (2000).
    Article CAS PubMed Google Scholar
  39. Mah, A. L., Perry, G., Smith, M. A. & Monteiro, M. J. Identification of ubiquilin, a novel presenilin interactor that increases presenilin protein accumulation. J. Cell Biol. 151, 847–862 (2000).
    Article CAS PubMed PubMed Central Google Scholar
  40. Gorrie, G. H. et al. Assembly of GABAA receptors composed of α1 and β2 subunits in both cultured neurones and fibroblasts. J. Neurosci. 17, 6587–6588 (1997).
    Article CAS PubMed PubMed Central Google Scholar
  41. Colin, I., Rostaing, P., Augustin, A. & Triller, A. Localization of components of glycinergic synapses during rat spinal cord development. J. Comp. Neurol. 398, 359–372 (1998).
    Article CAS PubMed Google Scholar
  42. Triller, A., Cluzeaud, F., Pfeiffer, F., Betz, H. & Korn, H. Distribution of glycine receptors at central synapses: an immunoelectron microscopy study. Cell Biol. 101, 683–688 (1985).
    Article CAS Google Scholar
  43. Triller, A., Cluzeaud, F., Pfeiffer, F. & Korn, H. in Molecular Aspects of Neurobiology (eds. Levi Montalcini, R. et al.) 101–105 (Springer, Berlin, Heidelberg, 1986).
    Book Google Scholar

Download references