GABAA receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein Plic-1 (original) (raw)
References
Macdonald, R. L. & Olsen, R. W. GABAA receptor channels. Annu. Rev. Neurosci.17, 569–602 (1994). ArticleCASPubMed Google Scholar
Rabow, L. E., Russek, S. J. & Farb, D. H. From ion currents to genomic analysis: recent advances in GABAA receptor research. Synapse21, 189–274 (1995). ArticleCASPubMed Google Scholar
Davies, P. A., Hanna, M. C., Hales, T. G. & Kirkness, E. F. Insensitivity to anaesthetic agents conferred by a class of GABAA receptor subunit. Nature385, 820–823 (1997). ArticleCASPubMed Google Scholar
Unwin, N. Neurotransmitter action: opening of ligand-gated ion channels. Cell Suppl.72, 31–41 (1993). Google Scholar
Essrich, C., Lorez, M., Benson, J. A., Fritschy, J. M. & Luscher, B. Postsynaptic clustering of major GABAA receptor subtypes requires the γ2 subunit and gephyrin. Nat. Neurosci.1, 563–571 (1998). ArticleCASPubMed Google Scholar
Feng, G. et al. Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity. Science282, 1321–1324 (1998). ArticleCASPubMed Google Scholar
Kittler, J. T. et al. The subcellular distribution of GABARAP and its ability to interact with NSF suggest a role for this protein in the intracellular transport of GABAA receptors. Mol. Cell Neurosci.18, 13–25 (2001). ArticleCASPubMed Google Scholar
Wang, H. B., Bedford, F. K., Brandon, N. J., Moss, S. J. & Olsen, R. W. GABAA-receptor-associated protein links GABAA receptors and the cytoskeleton. Nature397, 69–72 (1999). ArticleCASPubMed Google Scholar
Wan Q, et al. Recruitment of functional GABAA receptors to postsynaptic domains by insulin. Nature388, 686–689 (1997). ArticleCASPubMed Google Scholar
Nusser, Z., Hajos, N., Somogyi, P. & Mody, I. Increased number of synaptic GABAA receptors underlies potentiation at hippocampal inhibitory. Nature395, 172–177 (1998). ArticleCASPubMed Google Scholar
Nusser, Z., Cull-Candy, S. & Farrant, M. Differences in synaptic GABAA receptor number underlie variation in GABA mini amplitude. Neuron19, 697–709 (1997). ArticleCASPubMed Google Scholar
Moss, S. J. & Smart, T. G. Constructing inhibitory synapses. Nat. Rev. Neurosci.2, 241–250 (2001). ArticleCAS Google Scholar
Connolly, C. N. et al. Subcellular localization and endocytosis of homomeric γ2 subunit splice variants of γ-aminobutyric acid type A receptors. Mol. Cell Neurosci.13, 259–271 (1999). ArticleCASPubMed Google Scholar
Connolly, C. N. et al. Cell surface stability of γ-aminobutyric acid type A receptors. Dependence on protein kinase C activity and subunit composition. J. Biol. Chem.274, 36565–36572 (1999). ArticleCASPubMed Google Scholar
Kittler, J. T. et al. Constitutive endocytosis of GABAA receptors by an association with the adaptin AP2 complex modulates inhibitory synaptic currents in hippocampal neurons. J. Neurosci.20, 7972–7977 (2000). ArticleCASPubMedPubMed Central Google Scholar
Kittler, J. T. et al. Analysis of GABAA receptor assembly in mammalian cell lines and hippocampal neurons using γ2 subunit green fluorescent protein chimeras. Mol. Cell Neurosci.16, 440–452 (2000). ArticleCASPubMed Google Scholar
Wu, A. L., Wang, J., Zheleznyak, A. & Brown, E. J. Ubiquitin-related proteins regulate interaction of vimentin intermediate filaments with the plasma membrane. Mol. Cell4, 619–625 (1999). ArticleCASPubMed Google Scholar
Kleijnen, M. F. et al. The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome. Mol. Cell6, 409–401 (2000). ArticleCASPubMed Google Scholar
Field., S. & Song, O. A novel genetic system to detect protein–protein interactions. Nature340, 245–246 (1989). Article Google Scholar
Dong, H. et al. GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature386, 279–284 (1997). ArticleCASPubMed Google Scholar
Funakoshi, M., Geley, S., Hunt, T., Nishimoto, T. & Kobayashi, H. Identification of XDRP1; a Xenopus protein related to yeast Dsk2p binds to the N-terminus of cyclin A and inhibits its degradation. EMBO J.18, 5009–5018 (1999). ArticleCASPubMedPubMed Central Google Scholar
Jentsch, S. & Pyrowolakis, G. Ubiquitin and its kin: how close are the family ties? Trends Cell Biol.10, 335–341 (2000). ArticleCASPubMed Google Scholar
Hofmann, K. & Bucher, P. The UBA domain: a sequence motif present in multiple enzyme classes of the ubiquitination pathway. Trends Biochem. Sci.21, 172–173 (1996). ArticleCASPubMed Google Scholar
Hanley, J. G., Koulen, P., Bedford, F., Gordon-Weeks, P. R. & Moss, S. J. The protein MAP-1B links GABAC receptors to the cytoskeleton at retinal synapses. Nature397, 66–90 (1999). ArticleCASPubMed Google Scholar
Smith, D. B. & Johnson, K. S. Single step purification of polypeptides expressed in E. Coli as fusions with glutathione S-transferase. Gene67, 31–40 (1988). ArticleCASPubMed Google Scholar
Benke, D., Fritschy, J. M., Trzeciak, A., Bannwarth, W. & Mohler, H. Distribution, prevalence, and drug binding profile of gamma-aminobutyric acid type A receptor subtypes differing in the beta-subunit variant. J. Biol. Chem.269, 27100–27107 (1994). CASPubMed Google Scholar
Wooltorton, J. R., Moss, S. J. & Smart, T. G. Pharmacological and physiological characterization of murine homomeric β3 GABAA receptors. Eur. J. Neurosci.9, 2225–2235 (1997). ArticleCASPubMed Google Scholar
Connolly, C. N., McDonald, B. M., Krishek, B. J., Smart, T. G. & Moss, S. J. Assembly and cell surface expression of heteromeric and homomeric GABAA receptors. J. Biol. Chem.271, 89–97 (1996). ArticleCASPubMed Google Scholar
Todd, A. J., Watt, C., Spike, R. C. & Sieghart, W. Co-localization of GABA, glycine, and their receptors at synapses in the rat spinal cord. J. Neurosci.16, 974–982 (1996). ArticleCASPubMedPubMed Central Google Scholar
Noel, J. et al. Surface expression of AMPA receptors in hippocampal neurons is regulated by a NSF-dependent mechanism. Neuron23, 365–376 (1999). ArticleCASPubMed Google Scholar
Williams, E. J. et al. Selective inhibition of growth factor-stimulated mitogenesis by a cell-permeable Grb2-binding peptide. J. Biol. Chem.272, 22349–22354 (1997). ArticleCASPubMed Google Scholar
Taylor, P. M. et al. Identification of amino acid residues within GABAA receptor β subunits that mediate both homomeric and heteromeric receptor expression. J. Neurosci.19, 6360–6371 (1999). ArticleCASPubMedPubMed Central Google Scholar
Taylor, P. M. et al. Identification of residues within GABAA receptor alpha subunits that mediate specific assembly with receptor beta subunits. J. Neurosci.20, 1297–1306 (2000). ArticleCASPubMedPubMed Central Google Scholar
Garner, C. C., Nash, J. & Huganir, R. L. PDZ domains in synapse assembly and signaling. Trends Cell Biol.10, 274–280 (2000). ArticleCASPubMed Google Scholar
Mah, A. L., Perry, G., Smith, M. A. & Monteiro, M. J. Identification of ubiquilin, a novel presenilin interactor that increases presenilin protein accumulation. J. Cell Biol.151, 847–862 (2000). ArticleCASPubMedPubMed Central Google Scholar
Gorrie, G. H. et al. Assembly of GABAA receptors composed of α1 and β2 subunits in both cultured neurones and fibroblasts. J. Neurosci.17, 6587–6588 (1997). ArticleCASPubMedPubMed Central Google Scholar
Colin, I., Rostaing, P., Augustin, A. & Triller, A. Localization of components of glycinergic synapses during rat spinal cord development. J. Comp. Neurol.398, 359–372 (1998). ArticleCASPubMed Google Scholar
Triller, A., Cluzeaud, F., Pfeiffer, F., Betz, H. & Korn, H. Distribution of glycine receptors at central synapses: an immunoelectron microscopy study. Cell Biol.101, 683–688 (1985). ArticleCAS Google Scholar
Triller, A., Cluzeaud, F., Pfeiffer, F. & Korn, H. in Molecular Aspects of Neurobiology (eds. Levi Montalcini, R. et al.) 101–105 (Springer, Berlin, Heidelberg, 1986). Book Google Scholar