Disruption of ErbB receptor signaling in adult non-myelinating Schwann cells causes progressive sensory loss (original) (raw)

References

  1. Garratt, A.N., Britsch, S. & Birchmeier, C. Neuregulin, a factor with many functions in the life of a schwann cell. Bioessays 22, 987–996 (2000).
    Article CAS Google Scholar
  2. Falls, D.L., Rosen, K.M., Corfas, G., Lane, W.S. & Fischbach, G.D. ARIA, a protein that stimulates acetylcholine receptor synthesis, is a member of the neu ligand family. Cell 72, 801–815 (1993).
    Article CAS Google Scholar
  3. Holmes, W.E. et al. Identification of heregulin, a specific activator of p185erbB2. Science 256, 1205–1210 (1992).
    Article CAS Google Scholar
  4. Peles, E. et al. Isolation of the neu/HER-2 stimulatory ligand: a 44 kDa glycoprotein that induces differentiation of mammary tumor cells. Cell 69, 205–216 (1992).
    Article CAS Google Scholar
  5. Marchionni, M.A. et al. Glial growth factors are alternatively spliced erbB2 ligands expressed in the nervous system. Nature 362, 312–318 (1993).
    Article CAS Google Scholar
  6. Chen, M.S. et al. Expression of multiple neuregulin transcripts in postnatal rat brains. J. Comp. Neurol. 349, 389–400 (1994).
    Article CAS Google Scholar
  7. Corfas, G., Rosen, K.M., Aratake, H., Krauss, R. & Fischbach, G.D. Differential expression of ARIA isoforms in the rat brain. Neuron 14, 103–115 (1995).
    Article CAS Google Scholar
  8. Cohen, J.A., Yachnis, A.T., Arai, M., Davis, J.G. & Scherer, S.S. Expression of the neu proto-oncogene by Schwann cells during peripheral nerve development and Wallerian degeneration. J. Neurosci. Res. 31, 622–634 (1992).
    Article CAS Google Scholar
  9. Meyer, D. & Birchmeier, C. Multiple essential functions of neuregulin in development. Nature 378, 386–390 (1995).
    Article CAS Google Scholar
  10. Syroid, D.E. et al. Cell death in the Schwann cell lineage and its regulation by neuregulin. Proc. Natl. Acad. Sci. USA 93, 9229–9234 (1996).
    Article CAS Google Scholar
  11. Shah, N.M., Marchionni, M.A., Isaacs, I., Stroobant, P. & Anderson, D.J. Glial growth factor restricts mammalian neural crest stem cells to a glial fate. Cell 77, 349–360 (1994).
    Article CAS Google Scholar
  12. Mahanthappa, N.K., Anton, E.S. & Matthew, W.D. Glial growth factor 2, a soluble neuregulin, directly increases Schwann cell motility and indirectly promotes neurite outgrowth. J. Neurosci. 16, 4673–4683 (1996).
    Article CAS Google Scholar
  13. Garratt, A.N., Voiculescu, O., Topilko, P., Charnay, P. & Birchmeier, C. A dual role of erbB2 in myelination and in expansion of the schwann cell precursor pool. J. Cell Biol. 148, 1035–1046 (2000).
    Article CAS Google Scholar
  14. Jessen, K.R., Morgan, L., Stewart, H.J. & Mirsky, R. Three markers of adult non-myelin-forming Schwann cells, 217c(Ran-1), A5E3 and GFAP: development and regulation by neuron-Schwann cell interactions. Development 109, 91–103 (1990).
    CAS PubMed Google Scholar
  15. Brenner, M., Kisseberth, W.C., Su, Y., Besnard, F. & Messing, A. GFAP promoter directs astrocyte-specific expression in transgenic mice. J. Neurosci. 14, 1030–1037 (1994).
    Article CAS Google Scholar
  16. Zhuo, L. et al. Live astrocytes visualized by green fluorescent protein in transgenic mice. Dev. Biol. 187, 36–42 (1997).
    Article CAS Google Scholar
  17. Rio, C., Dikkes, P., Liberman, M.C. & Corfas, G. Glial fibrillary acidic protein expression and promoter activity in the inner ear of developing and adult mice. J. Comp. Neurol. 442, 156–162 (2002).
    Article CAS Google Scholar
  18. Rio, C., Rieff, H.I., Qi, P., Khurana, T.S. & Corfas, G. Neuregulin and erbB receptors play a critical role in neuronal migration. Neuron 19, 39–50 (1997).
    Article CAS Google Scholar
  19. Prevot, V. et al. Normal female sexual development requires neuregulin-erbB receptor signaling in hypothalamic astrocytes. J. Neurosci. 23, 230–239 (2003).
    Article CAS Google Scholar
  20. Patten, B.A., Peyrin, J.M., Weinmaster, G. & Corfas, G. Sequential signaling through Notch1 and erbB receptors mediates radial glia differentiation. J. Neurosci. 23, 6132–6140 (2003).
    Article CAS Google Scholar
  21. Julius, D. & Basbaum, A.I. Molecular mechanisms of nociception. Nature 413, 203–210 (2001).
    Article CAS Google Scholar
  22. Caterina, M.J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313 (2000).
    Article CAS Google Scholar
  23. Lee, D.E., Kim, S.J. & Zhuo, M. Comparison of behavioral responses to noxious cold and heat in mice. Brain Res. 845, 117–121 (1999).
    Article CAS Google Scholar
  24. Ji, R.R., Befort, K., Brenner, G.J. & Woolf, C.J. ERK MAP kinase activation in superficial spinal cord neurons induces prodynorphin and NK-1 upregulation and contributes to persistent inflammatory pain hypersensitivity. J. Neurosci. 22, 478–485 (2002).
    Article CAS Google Scholar
  25. Ji, R.R. & Rupp, F. Phosphorylation of transcription factor CREB in rat spinal cord after formalin-induced hyperalgesia: relationship to c-fos induction. J. Neurosci. 17, 1776–1785 (1997).
    Article CAS Google Scholar
  26. Hunt, S.P., Pini, A. & Evan, G. Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 328, 632–634 (1987).
    Article CAS Google Scholar
  27. Bennett, D.L. et al. A distinct subgroup of small DRG cells express GDNF receptor components and GDNF is protective for these neurons after nerve injury. J. Neurosci. 18, 3059–3072 (1998).
    Article CAS Google Scholar
  28. Averill, S., McMahon, S.B., Clary, D.O., Reichardt, L.F. & Priestley, J.V. Immunocytochemical localization of trkA receptors in chemically identified subgroups of adult rat sensory neurons. Eur. J. Neurosci. 7, 1484–1494 (1995).
    Article CAS Google Scholar
  29. Snider, W.D. & McMahon, S.B. Tackling pain at the source: new ideas about nociceptors. Neuron 20, 629–632 (1998).
    Article CAS Google Scholar
  30. Buj-Bello, A., Buchman, V.L., Horton, A., Rosenthal, A. & Davies, A.M. GDNF is an age-specific survival factor for sensory and autonomic neurons. Neuron 15, 821–828 (1995).
    Article CAS Google Scholar
  31. Matheson, C.R. et al. Glial cell line-derived neurotrophic factor (GDNF) is a neurotrophic factor for sensory neurons: comparison with the effects of the neurotrophins. J. Neurobiol. 32, 22–32 (1997).
    Article CAS Google Scholar
  32. Zwick, M. et al. Glial cell line-derived neurotrophic factor is a survival factor for isolectin B4-positive, but not vanilloid receptor 1-positive, neurons in the mouse. J. Neurosci. 22, 4057–4065 (2002).
    Article CAS Google Scholar
  33. Hammarberg, H. et al. GDNF mRNA in Schwann cells and DRG satellite cells after chronic sciatic nerve injury. Neuroreport 7, 857–860 (1996).
    Article CAS Google Scholar
  34. Naveilhan, P., ElShamy, W.M. & Ernfors, P. Differential regulation of mRNAs for GDNF and its receptors Ret and GDNFR alpha after sciatic nerve lesion in the mouse. Eur. J. Neurosci. 9, 1450–1460 (1997).
    Article CAS Google Scholar
  35. Trupp, M., Belluardo, N., Funakoshi, H. & Ibanez, C.F. Complementary and overlapping expression of glial cell line-derived neurotrophic factor (GDNF), c-ret proto-oncogene, and GDNF receptor-alpha indicates multiple mechanisms of trophic actions in the adult rat CNS. J. Neurosci. 17, 3554–3567 (1997).
    Article CAS Google Scholar
  36. Brown, M.J., Martin, J.R. & Asbury, A.K. Painful diabetic neuropathy. A morphometric study. Arch. Neurol. 33, 164–171 (1976).
    Article CAS Google Scholar
  37. Dutsch, M. et al. Small fiber dysfunction predominates in Fabry neuropathy. J. Clin. Neurophysiol. 19, 575–586 (2002).
    Article CAS Google Scholar
  38. Barbieri, S. et al. Small fibre involvement in neuropathy associated with IgG, IgA and IgM monoclonal gammopathy. Electromyogr. Clin. Neurophysiol. 35, 39–44 (1995).
    CAS PubMed Google Scholar
  39. Crone, S.A., Negro, A., Trumpp, A., Giovannini, M. & Lee, K.F. Colonic epithelial expression of ErbB2 is required for postnatal maintenance of the enteric nervous system. Neuron 37, 29–40 (2003).
    Article CAS Google Scholar
  40. Scherer, S.S. & Salzer, J.L. Axon-Schwann cell interactions in peripheral nerve regeneration. in Glial Cell Development (eds. Jessen, K.R. & Richardson, W.D.) 165–198 (Oxford: Bios Scientific Publishers, 1996).
    Google Scholar
  41. Lewis, S.E. et al. A role for HSP27 in sensory neuron survival. J. Neurosci. 19, 8945–8953 (1999).
    Article CAS Google Scholar
  42. Tandrup, T., Woolf, C.J. & Coggeshall, R.E. Delayed loss of small dorsal root ganglion cells after transection of the rat sciatic nerve. J. Comp. Neurol. 422, 172–180 (2000).
    Article CAS Google Scholar
  43. Benn, S.C. et al. Hsp27 upregulation and phosphorylation is required for injured sensory and motor neuron survival. Neuron 36, 45–56 (2002).
    Article CAS Google Scholar
  44. Johnson, E.M. Jr., Taniuchi, M. & DiStefano, P.S. Expression and possible function of nerve growth factor receptors on Schwann cells. Trends Neurosci. 11, 299–304 (1988).
    Article CAS Google Scholar
  45. Widenfalk, J., Lundstromer, K., Jubran, M., Brene, S. & Olson, L. Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid. J. Neurosci. 21, 3457–3475 (2001).
    Article CAS Google Scholar
  46. Sanchez, R.M. et al. Decreased glutamate receptor 2 expression and enhanced epileptogenesis in immature rat hippocampus after perinatal hypoxia-induced seizures. J. Neurosci. 21, 8154–8163 (2001).
    Article CAS Google Scholar
  47. Ji, R.R., Baba, H., Brenner, G.J. & Woolf, C.J. Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nat. Neurosci. 2, 1114–1119 (1999).
    Article CAS Google Scholar
  48. Pover, C.M., Orr, M.H., Jr. & Coggeshall, R.E. A method for producing unbiased histograms of neuronal profile sizes. J. Neurosci. Methods 49, 123–131 (1993).
    Article CAS Google Scholar
  49. Coggeshall, R.E. & Lekan, H.A. Methods for determining numbers of cells and synapses: a case for more uniform standards of review. J. Comp. Neurol. 364, 6–15 (1996).
    Article CAS Google Scholar

Download references