Differential control over cocaine-seeking behavior by nucleus accumbens core and shell (original) (raw)

References

  1. Roberts, D.C.S., Corcoran, M.E. & Fibiger, H.C. On the role of ascending catecholaminergic systems in intravenous self-administration of cocaine. Pharmacol. Biochem. Behav. 6, 615–620 (1977).
    Article CAS Google Scholar
  2. Pettit, H.O., Ettenberg, A., Bloom, F.E. & Koob, G.F. Destruction of dopamine in the nucleus accumbens selectively attenuates cocaine but not heroin self-administration in rats. Psychopharmacology 84, 167–173 (1984).
    Article CAS Google Scholar
  3. Caine, S.B. & Koob, G.F. Effects of mesolimbic dopamine depletion on responding maintained by cocaine and food. J. Exp. Anal. Behav. 61, 213–221 (1994).
    Article CAS Google Scholar
  4. Robledo, P., Maldonado-Lopez, R. & Koob, G.F. Role of dopamine receptors in the nucleus accumbens in the rewarding properties of cocaine. Ann. NY Acad. Sci. 654, 509–512 (1992).
    Article CAS Google Scholar
  5. Caine, S.B., Heinrichs, S.C., Coffin, V.L. & Koob, G.F. Effects of the dopamine D1 antagonist SCH23390 microinjected into the accumbens, amygdala or striatum on cocaine self-administration in the rat. Brain Res. 692, 47–56 (1995).
    Article CAS Google Scholar
  6. Di Chiara, G.D. & Imperato, A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc. Natl. Acad. Sci. USA 85, 5274–5278 (1988).
    Article CAS Google Scholar
  7. Hurd, Y., Weiss, F., Koob, G.F. & Ungerstedt, U. Cocaine reinforcement and extracellular DA overflow in rat nucleus accumbens: an in vivo microdialysis study. Brain Res. 498, 199–204 (1989).
    Article CAS Google Scholar
  8. Pettit, H.O. & Justice Jr, J.B. Dopamine in the nucleus accumbens during cocaine self-administration as studies by in vivo microdialysis. Pharmacol. Biochem. Behav. 34, 899–904 (1989).
    Article CAS Google Scholar
  9. Bradberry, C.W., Barrett-Larimore, R.L., Jatlow, P. & Rubino, S.R. Impact of self-administered cocaine and cocaine cues on extracellular dopamine in mesolimbic and sensorimotor striatum in rhesus monkeys. J. Neurosci. 20, 3874–3883 (2000).
    Article CAS Google Scholar
  10. Ito, R., Dalley, J.W., Howes, S.R., Robbins, T.W. & Everitt, B.J. Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. J. Neurosci. 20, 7489–7495 (2000).
    Article CAS Google Scholar
  11. Pulvirenti, L., Maldonado-Lopez, R. & Koob, G.F. NMDA receptors in the nucleus accumbens modulate intravenous cocaine but not heroin self-administration in the rat. Brain Res. 594, 327–330 (1992).
    Article CAS Google Scholar
  12. Cornish, J.L., Duffy, P. & Kalivas, P.W. A role for glutamate transmission in the relapse to cocaine-seeking behavior. Neuroscience 93, 1359–1367 (1999).
    Article CAS Google Scholar
  13. Zito, K.A., Vickers, G. & Roberts, D.C.S. Disruption of cocaine and heroin self-administration following kainic acid lesions of the nucleus accumbens. Pharmacol. Biochem. Behav. 23, 1029–1036 (1985).
    Article CAS Google Scholar
  14. Dworkin, S.I., Guerin, G.F., Goeders, N.E. & Smith, J.E. Kainic acid lesions of the nucleus accumbens selectively attenuate morphine self-administration. Pharmacol. Biochem. Behav. 29, 175–181 (1988).
    Article CAS Google Scholar
  15. Alderson, H.L., Parkinson, J.A., Robbins, T.W. & Everitt, B.J. The effects of excitotoxic lesions of the nucleus accumbens core or shell regions on intravenous heroin self-administration in rats. Psychopharmacology 153, 455–463 (2001).
    Article CAS Google Scholar
  16. Hutcheson, D.M., Parkinson, J.A., Robbins, T.W. & Everitt, B.J. The effects of nucleus accumbens core and shell lesions on intravenous heroin self-administration and the acquisition of drug-seeking behaviour under a second-order schedule of heroin reinforcement. Psychopharmacology 153, 464–472 (2001).
    Article CAS Google Scholar
  17. Everitt, B.J., Dickinson, A. & Robbins, T.W. The neuropsychological basis of addictive behaviour. Brain Res. Rev. 36, 129–138 (2001).
    Article CAS Google Scholar
  18. Robbins, T.W. & Everitt, B.J. Drug addiction: bad habits add up. Nature 398, 567–570 (1999).
    Article CAS Google Scholar
  19. Grant, S. et al. Activation of memory circuits during cue-elicited cocaine craving. Proc. Nat. Acad. Sci. USA 93, 12040–12045 (1996).
    Article CAS Google Scholar
  20. Childress, A.R. et al. Limbic activation during cue-induced cocaine craving. Am. J. Psychiatry 156, 11–18 (1999).
    Article CAS Google Scholar
  21. Stewart, J., de Wit, H. & Eikelboom, R. Role of unconditioned and conditioned drug effects in the self-administration of opiates and stimulants. Psychol. Rev. 91, 256–268 (1984).
    Article Google Scholar
  22. Arroyo, M., Markou, A., Robbins, T.W. & Everitt, B.J. Acquisition, maintenance, and reinstatement of intravenous cocaine self-administration under a second-order schedule of reinforcement in rats: effects of conditioned cues and continuous access to cocaine. Psychopharmacology 140, 331–344 (1998).
    Article CAS Google Scholar
  23. Everitt, B.J. & Robbins, T.W. Second-order schedules of drug reinforcement in rats and monkeys: measurement of reinforcing efficacy and drug-seeking behaviour. Psychopharmacology 153, 17–30 (2000).
    Article CAS Google Scholar
  24. Weiss, F. et al. Control of cocaine-seeking behavior by drug-associated stimuli in rats: Effects on recovery of extinguished operant-responding and extracellular dopamine levels in amygdala and nucleus accumbens. Proc. Natl. Acad. Sci. USA 97, 4321–4326 (2000).
    Article CAS Google Scholar
  25. See, R.E. Neural substrates of conditioned-cued relapse to drug-seeking behavior. Pharmacol. Biochem. Behav. 71, 517–529 (2002).
    Article CAS Google Scholar
  26. Whitelaw, R.B., Markou, A., Robbins, T.W. & Everitt, B.J. Excitotoxic lesions of the basolateral amygdala impair the acquisition of cocaine-seeking behaviour under a second order schedule of reinforcement. Psychopharmacology 127, 213–224 (1996).
    Article CAS Google Scholar
  27. Meil, W.M. & See, R.E. Lesions of the basolateral amygdala abolish the ability of drug associated cues to reinstate responding during withdrawal from self-administered cocaine. Behav. Brain Res. 87, 139–148 (1997).
    Article CAS Google Scholar
  28. Voorn, P., Gerfen, C.R. & Groenewegen, H.J. Compartmental organization of the ventral striatum of the rat: Immunohistochemical distribution of enkephalin, substance P, dopamine and calcium-binding protein. Comp. Neurol. 289, 189–201 (1989).
    Article CAS Google Scholar
  29. Heimer, L., Zahm, D.S., Churchill, L., Kalivas, P.W. & Wohltmann, C. Specificity in the projection patterns of accumbal core and shell in the rat. Neuroscience 41, 89–125 (1991).
    Article CAS Google Scholar
  30. Di Chiara G., Tanda G., Frau, R. & Carboni E. On the preferential release of dopamine in the nucleus accumbens by amphetamine: further evidence obtained by vertically implanted concentric dialysis probes. Psychopharmacology 112, 398–402 (1993).
    Article CAS Google Scholar
  31. Pontieri, F.E., Tanda, G. & Di Chiara, G. Intravenous cocaine, morphine, and amphetamine preferentially increase extracellular dopamine in the “shell” as compared with the “core” of the rat nucleus accumbens. Proc. Natl. Acad. Sci. USA 92, 12304–12308 (1995).
    Article CAS Google Scholar
  32. Carlezon, W.A. & Wise, R.A. Rewarding actions of phencyclidine and related drugs in nucleus accumbens shell and frontal cortex. J. Neurosci. 16, 3112–3122 (1996).
    Article CAS Google Scholar
  33. Rodd-Hendricks, Z.A., McKinzie, D.L., Li, T-K., Murphy, J.M. & McBride, W.J. Cocaine is self-administered into the shell but not the core of the nucleus accumbens of Wistar rats. J. Pharmacol. Exp. Ther. 303, 1216–1226 (2002).
    Article Google Scholar
  34. Cardinal, R.N., Parkinson, J.A., Hall, J. & Everitt, B.J. Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci. Biobehav. Rev. 26, 321–352 (2002).
    Article Google Scholar
  35. Parkinson, J.A., Willoughby, P.J., Robbins, T.W. & Everitt, B.J. Disconnection of the anterior cingulate cortex and nucleus accumbens core impairs Pavlovian approach behaviour: Further evidence for limbic cortical-ventral striatopallidal systems. Behav. Neurosci. 114, 42–63 (2000).
    Article CAS Google Scholar
  36. Hall, J., Parkinson, J.A., Connor, T.M., Dickinson, A. & Everitt, B.J. Involvement of the central nucleus of the amygdala and nucleus accumbens core in mediating Pavlovian influences on instrumental behaviour. Eur. J. Neurosci. 13, 1984–1992 (2001).
    Article CAS Google Scholar
  37. Dalley, J.W. et al. Nucleus accumbens dopamine and discriminated approach learning: interactive effects of 6-hydroxydopamine lesions and systemic apomorphine administration. Psychopharmacology 161, 425–433 (2002).
    Article CAS Google Scholar
  38. Parkinson, J.A., Olmstead, M.C., Burns, L.H., Robbins, T.W. & Everitt, B.J. Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive Pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by d-amphetamine. J. Neurosci. 19, 2401–2411 (1999).
    Article CAS Google Scholar
  39. Wyvell, C.L. & Berridge, K.C. Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: enhancement of reward 'Wanting' without enhanced 'Liking' or response reinforcement. J. Neurosci. 20, 8122–8130 (2000).
    Article CAS Google Scholar
  40. Cador, M., Robbins, T.W. & Everitt, B.J. Involvement of the amygdala in stimulus reward associations- interaction with the ventral striatum. Neuroscience 30, 77–86 (1989).
    Article CAS Google Scholar
  41. Burns, L.H., Robbins, T.W. & Everitt, B.J. Differential effects of excitotoxic lesions of the basolateral amygdala, ventral subiculum and medial prefrontal cortex on responding with conditioned reinforcement and locomotor activity potentiated by intra-accumbens infusions of d-amphetamine. Behav. Brain. Res. 55, 167–183 (1993).
    Article CAS Google Scholar
  42. Maldonado-Irizarry, C.S. & Kelley, A.E. Excitotoxic lesions of the core and shell subregions of the nucleus accumbens differentially disrupt body weight regulation and motor activity in rat. Brain Res. Bull. 38, 551–559 (1995).
    Article CAS Google Scholar
  43. Annett, L.E., McGregor, A. & Robbins, T.W. The effects of ibotenic acid lesions of the nucleus accumbens on spatial learning and extinction in the rat. Behav. Brain. Res. 31, 231–242 (1989).
    Article CAS Google Scholar
  44. Reading, P.J. & Dunnett, S.B. The effects of excitotoxic lesions of the nucleus accumbens on a matching to position task. Behav. Brain Res. 46, 17–29 (1991).
    Article CAS Google Scholar
  45. Cardinal, R.N., Pennicott, D.R., Sugathapala, C.L., Robbins, T.W. & Everitt, B.J. Impulsive choice induced in rats by lesions of the nucleus accumbens core. Science 292, 2499–2501 (2001).
    Article CAS Google Scholar
  46. Wise, R.A. & Bozarth, M.A. A psychomotor stimulant theory of addiction. Psychol. Rev. 94, 469–492 (1987).
    Article CAS Google Scholar
  47. Haber, S.N., Fudge, J.L. & McFarland, N.R. Striatonigrostriatal pathways in primates from an ascending spiral from the shell to the dorsolateral striatum. J. Neurosci. 20, 2369–2382 (2000).
    Article CAS Google Scholar
  48. Caine, S.B., Lintz, R. & Koob, G.F. Intravenous self-administration techniques in animals. in Behavioral Neuroscience: a Practical Approach Vol. 2 (ed. Sahgal, A.) 117–143 (IRL Press, Oxford, UK, 1992).
    Google Scholar
  49. Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Academic Press, San Diego, 1998).
    Google Scholar

Download references