Decoding the visual and subjective contents of the human brain (original) (raw)
Hubel, D.H. & Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.)160, 106–154 (1962). ArticleCAS Google Scholar
Hubel, D.H. & Wiesel, T.N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (Lond.)195, 215–243 (1968). ArticleCAS Google Scholar
Blasdel, G.G. Orientation selectivity, preference, and continuity in monkey striate cortex. J. Neurosci.12, 3139–3161 (1992). ArticleCAS Google Scholar
Bartfeld, E. & Grinvald, A. Relationships between orientation-preference pinwheels, cytochrome oxidase blobs, and ocular-dominance columns in primate striate cortex. Proc. Natl. Acad. Sci. USA89, 11905–11909 (1992). ArticleCAS Google Scholar
Paradiso, M.A. A theory for the use of visual orientation information which exploits the columnar structure of striate cortex. Biol. Cybern.58, 35–49 (1988). ArticleCAS Google Scholar
Pouget, A., Dayan, P. & Zemel, R. Information processing with population codes. Nat. Rev. Neurosci.1, 125–132 (2000). ArticleCAS Google Scholar
Haxby, J.V. et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science293, 2425–2430 (2001). ArticleCAS Google Scholar
Cox, D.D. & Savoy, R.L. Functional magnetic resonance imaging (fMRI) 'brain reading': detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage19, 261–270 (2003). Article Google Scholar
Carlson, T.A., Schrater, P. & He, S. Patterns of activity in the categorical representations of objects. J. Cogn. Neurosci.15, 704–717 (2003). Article Google Scholar
Vanduffel, W., Tootell, R.B., Schoups, A.A. & Orban, G.A. The organization of orientation selectivity throughout macaque visual cortex. Cereb. Cortex12, 647–662 (2002). Article Google Scholar
Kim, D.S., Duong, T.Q. & Kim, S.G. High-resolution mapping of iso-orientation columns by fMRI. Nat. Neurosci.3, 164–169 (2000). ArticleCAS Google Scholar
Engel, S.A., Glover, G.H. & Wandell, B.A. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cereb. Cortex7, 181–192 (1997). ArticleCAS Google Scholar
Malonek, D. & Grinvald, A. Interactions between electrical activity and cortical microcirculation revealed by imaging spectroscopy: implications for functional brain mapping. Science272, 551–554 (1996). ArticleCAS Google Scholar
Shtoyerman, E., Arieli, A., Slovin, H., Vanzetta, I. & Grinvald, A. Long-term optical imaging and spectroscopy reveal mechanisms underlying the intrinsic signal and stability of cortical maps in V1 of behaving monkeys. J. Neurosci.20, 8111–8121 (2000). ArticleCAS Google Scholar
Vapnik, V.N. Statistical Learning Theory (Wiley, New York, 1998). Google Scholar
Minsky, L.M. & Papert, S.A. Perceptrons – Expanded Edition: An Introduction to Computational Geometry (MIT Press, Boston, 1987). Google Scholar
Furmanski, C.S. & Engel, S.A. An oblique effect in human primary visual cortex. Nat. Neurosci.3, 535–536 (2000). ArticleCAS Google Scholar
Bauer, R. & Dow, B.M. Complementary global maps for orientation coding in upper and lower layers of the monkey's foveal striate cortex. Exp. Brain Res.76, 503–509 (1989). ArticleCAS Google Scholar
Schall, J.D., Perry, V.H. & Leventhal, A.G. Retinal ganglion cell dendritic fields in old-world monkeys are oriented radially. Brain Res.368, 18–23 (1986). ArticleCAS Google Scholar
Treue, S. & Maunsell, J.H. Attentional modulation of visual motion processing in cortical areas MT and MST. Nature382, 539–541 (1996). ArticleCAS Google Scholar
Treue, S. & Martinez Trujillo, J.C. Feature-based attention influences motion processing gain in macaque visual cortex. Nature399, 575–579 (1999). ArticleCAS Google Scholar
Treue, S. Visual attention: the where, what, how and why of saliency. Curr. Opin. Neurobiol.13, 428–432 (2003). ArticleCAS Google Scholar
Roelfsema, P.R., Lamme, V.A. & Spekreijse, H. Object-based attention in the primary visual cortex of the macaque monkey. Nature395, 376–381 (1998). ArticleCAS Google Scholar
Watanabe, T. et al. Task-dependent influences of attention on the activation of human primary visual cortex. Proc. Natl. Acad. Sci. USA95, 11489–11492 (1998). ArticleCAS Google Scholar
Saenz, M., Buracas, G.T. & Boynton, G.M. Global effects of feature-based attention in human visual cortex. Nat. Neurosci.5, 631–632 (2002). ArticleCAS Google Scholar
Wilson, H.R., Levi, D., Maffei, L., Rovamo, J. & DeValois, R. in Visual Perception: The Neurophysiological Foundations (eds. Spillman, L. & Werner, J.S.) 231–272 (Academic, San Diego, 1990). Book Google Scholar
Tootell, R.B. et al. Functional analysis of primary visual cortex (V1) in humans. Proc. Natl. Acad. Sci. USA95, 811–817 (1998). ArticleCAS Google Scholar
Boynton, G.M. & Finney, E.M. Orientation-specific adaptation in human visual cortex. J. Neurosci.23, 8781–8787 (2003). ArticleCAS Google Scholar
Kamitani, Y. & Shimojo, S. Manifestation of scotomas created by transcranial magnetic stimulation of human visual cortex. Nat. Neurosci.2, 767–771 (1999). ArticleCAS Google Scholar
Rees, G., Kreiman, G. & Koch, C. Neural correlates of consciousness in humans. Nat. Rev. Neurosci.3, 261–270 (2002). ArticleCAS Google Scholar
Tong, F. Primary visual cortex and visual awareness. Nat. Rev. Neurosci.4, 219–229 (2003). ArticleCAS Google Scholar
Koch, C. The Quest for Consciousness: A Neurobiological Approach (Roberts, Englewood, Colorado, USA, 2004). Google Scholar
Donoghue, J.P. Connecting cortex to machines: recent advances in brain interfaces. Nat. Neurosci.5 (suppl.): 1085–1088 (2002). ArticleCAS Google Scholar
Wolpaw, J.R. & McFarland, D.J. Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proc. Natl. Acad. Sci. USA101, 17849–17854 (2004). ArticleCAS Google Scholar
Kahneman, D. & Wolman, R.E. Stroboscopic motion: Effects of duration and interval. Percept. Psychophys.8, 161–164 (1970). Article Google Scholar
Sereno, M.I. et al. Borders of multiple visual area in humans revealed by functional magnetic resonance imaging. Science268, 889–893 (1995). ArticleCAS Google Scholar
Zeki, S. et al. A direct demonstration of functional specialization in human visual cortex. J. Neurosci.11, 641–649 (1991). ArticleCAS Google Scholar
Watson, J.D. et al. Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb. Cortex3, 79–94 (1993). ArticleCAS Google Scholar
Tootell, R.B. et al. Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J. Neurosci.15, 3215–3230 (1995). ArticleCAS Google Scholar
Woods, R.P., Grafton, S.T., Holmes, C.J., Cherry, S.R. & Mazziotta, J.C. Automated image registration: I. General methods and intrasubject, intramodality validation. J. Comput. Assist. Tomogr.22, 139–152 (1998). ArticleCAS Google Scholar