SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines (original) (raw)

References

  1. Zhang, L. & McBain, C.J. Potassium conductances underlying repolarization and afterhyperpolarization in rat CA1 hippocampal interneurons. J. Physiol. (Lond.) 488, 661–672 (1995).
    Article CAS Google Scholar
  2. Sah, P. & Mclachlan, E.M. Ca2+-activated K+ currents underlying the afterhyperpolarization in guinea pig vagal neurons: a role for Ca2+-activated Ca2+ release. Neuron 7, 257–264 (1991).
    Article CAS Google Scholar
  3. Lorenzon, N.M. & Foehring, R.C. Relationship between repetitive firing and afterhyperpolarizations in human neocortical neurons. J. Neurophysiol. 67, 350–363 (1992).
    Article CAS Google Scholar
  4. Stackman, R.W. et al. Small conductance Ca2+-activated K+ channels modulate synaptic plasticity and memory encoding. J. Neurosci. 22, 10163–10171 (2002).
    Article CAS Google Scholar
  5. Habermann, E. Apamin. Pharmacol. Ther. 25, 255–270 (1984).
    Article CAS Google Scholar
  6. Lisman, J. A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc. Natl. Acad. Sci. USA 86, 9574–9578 (1989).
    Article CAS Google Scholar
  7. Mulkey, R.M. & Malenka, R.C. Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9, 967–975 (1992).
    Article CAS Google Scholar
  8. Dudek, S.M. & Bear, M.F. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-d-aspartate receptor blockade. Proc. Natl. Acad. Sci. USA 89, 4363–4367 (1992).
    Article CAS Google Scholar
  9. Artola, A. & Singer, W. Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci. 16, 480–487 (1993).
    Article CAS Google Scholar
  10. Bliss, T.V. & Collingridge, G.L. A synaptic model of memory long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).
    Article CAS Google Scholar
  11. Cummings, J.A., Mulkey, R.M., Nicoll, R.A. & Malenka, R.C. Ca2+ signaling requirements for long term depression in the hippocampus. Neuron 16, 825–833 (1996).
    Article CAS Google Scholar
  12. Yang, S.N., Tang, Y.G. & Zucker, R.S. Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. J. Neurophysiol. 81, 781–787 (1999).
    Article CAS Google Scholar
  13. Sabatini, B.L., Oertner, T.G. & Svoboda, K. The life cycle of Ca2+ ions in dendritic spines. Neuron 33, 439–452 (2002).
    Article CAS Google Scholar
  14. Mayer, M.L., Westbrook, G.L. & Guthrie, P.B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309, 261–263 (1984).
    Article CAS Google Scholar
  15. Lee, W.S., Ngo-Anh, T.J., Bruening-Wright, A., Maylie, J. & Adelman, J.P. Small conductance Ca2+-activated K+ channels and calmodulin: cell surface expression and gating. J. Biol. Chem. 278, 25940–25946 (2003).
    Article CAS Google Scholar
  16. Ishii, T.M., Maylie, J. & Adelman, J.P. Determinants of apamin and D-tubocurarine block in SK potassium channels. J. Biol. Chem. 272, 23195–23200 (1997).
    Article CAS Google Scholar
  17. Behnisch, T. & Reymann, K.G. Inhibition of apamin-sensitive calcium dependent potassium channels facilitate the induction of long-term potentiation in the CA1 region of rat hippocampus in vitro. Neurosci. Lett. 253, 91–94 (1998).
    Article CAS Google Scholar
  18. Katz, B. & Miledi, R. The role of calcium in neuromuscular facilitation. J. Physiol. (Lond.) 195, 481–492 (1968).
    Article CAS Google Scholar
  19. Carter, A.G. & Sabatini, B.L. State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 44, 483–493 (2004).
    Article CAS Google Scholar
  20. Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 4, 1086–1092 (2001).
    Article CAS Google Scholar
  21. Bekkers, J.M. & Stevens, C.F. NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus. Nature 341, 230–233 (1989).
    Article CAS Google Scholar
  22. Hestrin, S., Nicoll, R.A., Perkel, D.J. & Sah, P. Analysis of excitatory synaptic action in pyramidal cells using whole-cell recording from rat hippocampal slices. J. Physiol. (Lond.) 422, 203–225 (1990).
    Article CAS Google Scholar
  23. Hestrin, S., Sah, P. & Nicoll, R.A. Mechanisms generating the time course of dual component excitatory synaptic currents recorded in hippocampal slices. Neuron 5, 247–253 (1990).
    Article CAS Google Scholar
  24. Lester, R.A.J., Clements, J.D., Westbrook, G.L. & Jahr, C.E. Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature 346, 565–567 (1990).
    Article CAS Google Scholar
  25. Popescu, G., Robert, A., Howe, J.R. & Auerbach, A. Reaction mechanism determines NMDA receptor response to repetitive stimulation. Nature 430, 790–793 (2004).
    Article CAS Google Scholar
  26. Erreger, K., Dravid, S.M., Banke, T.G., Wyllie, D.J. & Traynelis, S.F. Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signaling profiles. J. Physiol. (Lond.) 563, 345–352 (2005).
    Article CAS Google Scholar
  27. Kampa, B.M., Clements, J., Jonas, P. & Stuart, G.J. Kinetics of Mg2+ unblock of NMDA receptors: implications for spike-timing dependent synaptic plasticity. J. Physiol. (Lond.) 556, 337–345 (2004).
    Article CAS Google Scholar
  28. Sabatini, B.L. & Svoboda, K. Analysis of calcium channels in single spines using optical fluctuation analysis. Nature 408, 589–593 (2000).
    Article CAS Google Scholar
  29. Yasuda, R., Sabatini, B.L. & Svoboda, K. Plasticity of calcium channels in dendritic spines. Nat. Neurosci. 6, 948–955 (2003).
    Article CAS Google Scholar
  30. Naraghi, M. & Neher, E. Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca2+] at the mouth of a calcium channel. J. Neurosci. 17, 6961–6973 (1997).
    Article CAS Google Scholar
  31. Xia, X-M. et al. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature 395, 503–507 (1998).
    Article CAS Google Scholar
  32. Hirschberg, B., Maylie, J., Adelman, J.P. & Marrion, N.V. Gating of recombinant small conductance Ca-activated K+ channels by calcium. J. Gen. Physiol. 111, 565–581 (1998).
    Article CAS Google Scholar
  33. Hirschberg, B., Maylie, J., Adelman, J.P. & Marrion, N.V. Gating properties of single SK channels in hippocampal CA1 pyramidal neurons. Biophys. J. 77, 1905–1913 (1999).
    Article CAS Google Scholar
  34. Marrion, N.V. & Tavalin, S.J. Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature 395, 900–905 (1998).
    Article CAS Google Scholar
  35. Zorumski, C.F., Thio, L.L., Clark, G.D. & Clifford, D.B. Calcium influx through N-methyl-D-aspartate channels activates a potassium current in postnatal rat hippocampal neurons. Neurosci. Lett. 99, 293–299 (1989).
    Article CAS Google Scholar
  36. Shah, M.M. & Haylett, D.G.K. + currents generated by NMDA receptor activation in rat hippocampal pyramidal neurons. J. Neurophysiol. 87, 2983–2989 (2002).
    Article CAS Google Scholar
  37. Isaacson, J.S. & Murphy, G.J. Glutamate-mediated extrasynaptic inhibition: direct coupling of NMDA receptors to Ca2+-activated K+ channels. Neuron 31, 1027–1034 (2001).
    Article CAS Google Scholar
  38. Paul, K., Keith, D.J. & Johnson, S.W. Modulation of calcium-activated potassium small conductance (SK) current in rat dopamine neurons of the ventral tegmental area. Neurosci. Lett. 348, 180–184 (2003).
    Article CAS Google Scholar
  39. Bond, C.T. et al. Small conductance Ca2+-activated K+ channel knock-out mice reveal the identity of calcium-dependent afterhyperpolarization currents. J. Neurosci. 24, 5301–5306 (2004).
    Article CAS Google Scholar
  40. Cai, X. et al. Unique roles of SK and Kv4.2 potassium channels in dendritic integration. Neuron 44, 351–364 (2004).
    Article CAS Google Scholar
  41. Stocker, M., Krause, M. & Pedarzani, P. An apamin-sensitive Ca2+-activated K+ current in hippocampal pyramidal neurons. Proc. Natl. Acad. Sci. USA 96, 4662–4667 (1999).
    Article CAS Google Scholar
  42. Goslin, K., Asmussen, H. & Banker, G. in Culturing Nerve Cells. 2nd edn. (eds. Goslin, K. & Banker, G.) 339–370 (MIT Press, Cambridge, Massachusetts, USA, 1998).
    Google Scholar
  43. Pologruto, T.A., Sabatini, B.L. & Svoboda, K. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. Online 2, 13 (2003).
    Article Google Scholar

Download references