SK channels and NMDA receptors form a Ca2+-mediated feedback loop in dendritic spines (original) (raw)
References
Zhang, L. & McBain, C.J. Potassium conductances underlying repolarization and afterhyperpolarization in rat CA1 hippocampal interneurons. J. Physiol. (Lond.)488, 661–672 (1995). ArticleCAS Google Scholar
Sah, P. & Mclachlan, E.M. Ca2+-activated K+ currents underlying the afterhyperpolarization in guinea pig vagal neurons: a role for Ca2+-activated Ca2+ release. Neuron7, 257–264 (1991). ArticleCAS Google Scholar
Lorenzon, N.M. & Foehring, R.C. Relationship between repetitive firing and afterhyperpolarizations in human neocortical neurons. J. Neurophysiol.67, 350–363 (1992). ArticleCAS Google Scholar
Stackman, R.W. et al. Small conductance Ca2+-activated K+ channels modulate synaptic plasticity and memory encoding. J. Neurosci.22, 10163–10171 (2002). ArticleCAS Google Scholar
Lisman, J. A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc. Natl. Acad. Sci. USA86, 9574–9578 (1989). ArticleCAS Google Scholar
Mulkey, R.M. & Malenka, R.C. Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron9, 967–975 (1992). ArticleCAS Google Scholar
Dudek, S.M. & Bear, M.F. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-d-aspartate receptor blockade. Proc. Natl. Acad. Sci. USA89, 4363–4367 (1992). ArticleCAS Google Scholar
Artola, A. & Singer, W. Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci.16, 480–487 (1993). ArticleCAS Google Scholar
Bliss, T.V. & Collingridge, G.L. A synaptic model of memory long-term potentiation in the hippocampus. Nature361, 31–39 (1993). ArticleCAS Google Scholar
Cummings, J.A., Mulkey, R.M., Nicoll, R.A. & Malenka, R.C. Ca2+ signaling requirements for long term depression in the hippocampus. Neuron16, 825–833 (1996). ArticleCAS Google Scholar
Yang, S.N., Tang, Y.G. & Zucker, R.S. Selective induction of LTP and LTD by postsynaptic [Ca2+]i elevation. J. Neurophysiol.81, 781–787 (1999). ArticleCAS Google Scholar
Sabatini, B.L., Oertner, T.G. & Svoboda, K. The life cycle of Ca2+ ions in dendritic spines. Neuron33, 439–452 (2002). ArticleCAS Google Scholar
Mayer, M.L., Westbrook, G.L. & Guthrie, P.B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature309, 261–263 (1984). ArticleCAS Google Scholar
Lee, W.S., Ngo-Anh, T.J., Bruening-Wright, A., Maylie, J. & Adelman, J.P. Small conductance Ca2+-activated K+ channels and calmodulin: cell surface expression and gating. J. Biol. Chem.278, 25940–25946 (2003). ArticleCAS Google Scholar
Ishii, T.M., Maylie, J. & Adelman, J.P. Determinants of apamin and D-tubocurarine block in SK potassium channels. J. Biol. Chem.272, 23195–23200 (1997). ArticleCAS Google Scholar
Behnisch, T. & Reymann, K.G. Inhibition of apamin-sensitive calcium dependent potassium channels facilitate the induction of long-term potentiation in the CA1 region of rat hippocampus in vitro. Neurosci. Lett.253, 91–94 (1998). ArticleCAS Google Scholar
Katz, B. & Miledi, R. The role of calcium in neuromuscular facilitation. J. Physiol. (Lond.)195, 481–492 (1968). ArticleCAS Google Scholar
Carter, A.G. & Sabatini, B.L. State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron44, 483–493 (2004). ArticleCAS Google Scholar
Matsuzaki, M. et al. Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci.4, 1086–1092 (2001). ArticleCAS Google Scholar
Bekkers, J.M. & Stevens, C.F. NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus. Nature341, 230–233 (1989). ArticleCAS Google Scholar
Hestrin, S., Nicoll, R.A., Perkel, D.J. & Sah, P. Analysis of excitatory synaptic action in pyramidal cells using whole-cell recording from rat hippocampal slices. J. Physiol. (Lond.)422, 203–225 (1990). ArticleCAS Google Scholar
Hestrin, S., Sah, P. & Nicoll, R.A. Mechanisms generating the time course of dual component excitatory synaptic currents recorded in hippocampal slices. Neuron5, 247–253 (1990). ArticleCAS Google Scholar
Lester, R.A.J., Clements, J.D., Westbrook, G.L. & Jahr, C.E. Channel kinetics determine the time course of NMDA receptor-mediated synaptic currents. Nature346, 565–567 (1990). ArticleCAS Google Scholar
Popescu, G., Robert, A., Howe, J.R. & Auerbach, A. Reaction mechanism determines NMDA receptor response to repetitive stimulation. Nature430, 790–793 (2004). ArticleCAS Google Scholar
Erreger, K., Dravid, S.M., Banke, T.G., Wyllie, D.J. & Traynelis, S.F. Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signaling profiles. J. Physiol. (Lond.)563, 345–352 (2005). ArticleCAS Google Scholar
Kampa, B.M., Clements, J., Jonas, P. & Stuart, G.J. Kinetics of Mg2+ unblock of NMDA receptors: implications for spike-timing dependent synaptic plasticity. J. Physiol. (Lond.)556, 337–345 (2004). ArticleCAS Google Scholar
Sabatini, B.L. & Svoboda, K. Analysis of calcium channels in single spines using optical fluctuation analysis. Nature408, 589–593 (2000). ArticleCAS Google Scholar
Yasuda, R., Sabatini, B.L. & Svoboda, K. Plasticity of calcium channels in dendritic spines. Nat. Neurosci.6, 948–955 (2003). ArticleCAS Google Scholar
Naraghi, M. & Neher, E. Linearized buffered Ca2+ diffusion in microdomains and its implications for calculation of [Ca2+] at the mouth of a calcium channel. J. Neurosci.17, 6961–6973 (1997). ArticleCAS Google Scholar
Xia, X-M. et al. Mechanism of calcium gating in small-conductance calcium-activated potassium channels. Nature395, 503–507 (1998). ArticleCAS Google Scholar
Hirschberg, B., Maylie, J., Adelman, J.P. & Marrion, N.V. Gating of recombinant small conductance Ca-activated K+ channels by calcium. J. Gen. Physiol.111, 565–581 (1998). ArticleCAS Google Scholar
Hirschberg, B., Maylie, J., Adelman, J.P. & Marrion, N.V. Gating properties of single SK channels in hippocampal CA1 pyramidal neurons. Biophys. J.77, 1905–1913 (1999). ArticleCAS Google Scholar
Marrion, N.V. & Tavalin, S.J. Selective activation of Ca2+-activated K+ channels by co-localized Ca2+ channels in hippocampal neurons. Nature395, 900–905 (1998). ArticleCAS Google Scholar
Zorumski, C.F., Thio, L.L., Clark, G.D. & Clifford, D.B. Calcium influx through N-methyl-D-aspartate channels activates a potassium current in postnatal rat hippocampal neurons. Neurosci. Lett.99, 293–299 (1989). ArticleCAS Google Scholar
Shah, M.M. & Haylett, D.G.K. + currents generated by NMDA receptor activation in rat hippocampal pyramidal neurons. J. Neurophysiol.87, 2983–2989 (2002). ArticleCAS Google Scholar
Isaacson, J.S. & Murphy, G.J. Glutamate-mediated extrasynaptic inhibition: direct coupling of NMDA receptors to Ca2+-activated K+ channels. Neuron31, 1027–1034 (2001). ArticleCAS Google Scholar
Paul, K., Keith, D.J. & Johnson, S.W. Modulation of calcium-activated potassium small conductance (SK) current in rat dopamine neurons of the ventral tegmental area. Neurosci. Lett.348, 180–184 (2003). ArticleCAS Google Scholar
Bond, C.T. et al. Small conductance Ca2+-activated K+ channel knock-out mice reveal the identity of calcium-dependent afterhyperpolarization currents. J. Neurosci.24, 5301–5306 (2004). ArticleCAS Google Scholar
Cai, X. et al. Unique roles of SK and Kv4.2 potassium channels in dendritic integration. Neuron44, 351–364 (2004). ArticleCAS Google Scholar
Stocker, M., Krause, M. & Pedarzani, P. An apamin-sensitive Ca2+-activated K+ current in hippocampal pyramidal neurons. Proc. Natl. Acad. Sci. USA96, 4662–4667 (1999). ArticleCAS Google Scholar
Goslin, K., Asmussen, H. & Banker, G. in Culturing Nerve Cells. 2nd edn. (eds. Goslin, K. & Banker, G.) 339–370 (MIT Press, Cambridge, Massachusetts, USA, 1998). Google Scholar
Pologruto, T.A., Sabatini, B.L. & Svoboda, K. ScanImage: flexible software for operating laser scanning microscopes. Biomed. Eng. Online2, 13 (2003). Article Google Scholar