Isolation of neural stem cells from the postnatal cerebellum (original) (raw)
References
Rapoport, M., van Reekum, R. & Mayberg, H. The role of the cerebellum in cognition and behavior: a selective review. J. Neuropsychiatry Clin. Neurosci.12, 193–198 (2000). CAS Google Scholar
Altman, J. & Bayer, S.A. Development of the Cerebellar System: In Relation to Its Evolution, Structure and Functions (CRC Press, Boca Raton, Florida, USA, 1997). Google Scholar
Rosenberg, R.N. & Grossman, A. Hereditary ataxia. Neurol. Clin.7, 25–36 (1989). CAS Google Scholar
Kern, J.K. The possible role of the cerebellum in autism/PDD: disruption of a multisensory feedback loop. Med. Hypotheses59, 255–260 (2002). CAS Google Scholar
Martin, P. & Albers, M. Cerebellum and schizophrenia: a selective review. Schizophr. Bull.21, 241–250 (1995). CAS Google Scholar
Wechsler-Reya, R. & Scott, M.P. The developmental biology of brain tumors. Annu. Rev. Neurosci.24, 385–428 (2001). CAS Google Scholar
Wetmore, C. Sonic hedgehog in normal and neoplastic proliferation: insight gained from human tumors and animal models. Curr. Opin. Genet. Dev.13, 34–42 (2003). CAS Google Scholar
Zhang, L. & Goldman, J.E. Generation of cerebellar interneurons from dividing progenitors in white matter. Neuron16, 47–54 (1996). Google Scholar
Hallonet, M.E., Teillet, M.A. & Le Douarin, N.M. A new approach to the development of the cerebellum provided by the quail-chick marker system. Development108, 19–31 (1990). CAS Google Scholar
Lumpkin, E.A. et al. Math1-driven GFP expression in the developing nervous system of transgenic mice. Gene Expr. Patterns3, 389–395 (2003). CAS Google Scholar
Wechsler-Reya, R.J. & Scott, M.P. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron22, 103–114 (1999). CAS Google Scholar
Cheng, Y., Tao, Y., Black, I.B. & DiCicco-Bloom, E. A single peripheral injection of basic fibroblast growth factor (bFGF) stimulates granule cell production and increases cerebellar growth in newborn rats. J. Neurobiol.46, 220–229 (2001). CAS Google Scholar
Wernecke, H., Lindner, J. & Schachner, M. Cell type specificity and developmental expression of the L2/HNK-1 epitopes in mouse cerebellum. J. Neuroimmunol.9, 115–130 (1985). CAS Google Scholar
Theodosis, D.T., Rougon, G. & Poulain, D.A. Retention of embryonic features by an adult neuronal system capable of plasticity: polysialylated neural cell adhesion molecule in the hypothalamo-neurohypophysial system. Proc. Natl. Acad. Sci. USA88, 5494–5498 (1991). CAS Google Scholar
Tucker, R.P., Binder, L.I., Viereck, C., Hemmings, B.A. & Matus, A.I. The sequential appearance of low- and high-molecular-weight forms of MAP2 in the developing cerebellum. J. Neurosci.8, 4503–4512 (1988). CAS Google Scholar
Sommer, I. & Schachner, M. Monoclonal antibodies (O1 to O4) to oligodendrocyte surfaces: an immunocytological study in the central nervous system. Dev. Biol.83, 311–327 (1981). CAS Google Scholar
Dawson, M.R., Polito, A., Levine, J.M. & Reynolds, R. NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol. Cell. Neurosci.24, 476–488 (2003). CAS Google Scholar
Bignami, A., Eng, L.F., Dahl, D. & Uyeda, C.T. Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res.43, 429–435 (1972). CAS Google Scholar
Geisert, E.E., Jr., Yang, L. & Irwin, M.H. Astrocyte growth, reactivity, and the target of the antiproliferative antibody, TAPA. J. Neurosci.16, 5478–5487 (1996). CAS Google Scholar
Haegel, H., Tolg, C., Hofmann, M. & Ceredig, R. Activated mouse astrocytes and T cells express similar CD44 variants. Role of CD44 in astrocyte/T cell binding. J. Cell Biol.122, 1067–1077 (1993). CAS Google Scholar
Lendahl, U., Zimmerman, L.B. & McKay, R.D. CNS stem cells express a new class of intermediate filament protein. Cell60, 585–595 (1990). CAS Google Scholar
Corbeil, D., Roper, K., Fargeas, C.A., Joester, A. & Huttner, W.B. Prominin: a story of cholesterol, plasma membrane protrusions and human pathology. Traffic2, 82–91 (2001). CAS Google Scholar
Graham, V., Khudyakov, J., Ellis, P. & Pevny, L. SOX2 functions to maintain neural progenitor identity. Neuron39, 749–765 (2003). CAS Google Scholar
Sakakibara, S. et al. Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the mammalian CNS stem cell. Dev. Biol.176, 230–242 (1996). CAS Google Scholar
Sawamoto, K. et al. Generation of dopaminergic neurons in the adult brain from mesencephalic precursor cells labeled with a nestin-GFP transgene. J. Neurosci.21, 3895–3903 (2001). CAS Google Scholar
Tamaki, S. et al. Engraftment of sorted/expanded human central nervous system stem cells from fetal brain. J. Neurosci. Res.69, 976–986 (2002). CAS Google Scholar
Reynolds, B.A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science255, 1707–1710 (1992). CAS Google Scholar
Imura, T., Kornblum, H.I. & Sofroniew, M.V. The predominant neural stem cell isolated from postnatal and adult forebrain but not early embryonic forebrain expresses GFAP. J. Neurosci.23, 2824–2832 (2003). CAS Google Scholar
Takahashi, J., Palmer, T.D. & Gage, F.H. Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adult-derived neural stem cell cultures. J. Neurobiol.38, 65–81 (1999). CAS Google Scholar
Galli, R., Pagano, S.F., Gritti, A. & Vescovi, A.L. Regulation of neuronal differentiation in human CNS stem cell progeny by leukemia inhibitory factor. Dev. Neurosci.22, 86–95 (2000). CAS Google Scholar
Erlandsson, A., Enarsson, M. & Forsberg-Nilsson, K. Immature neurons from CNS stem cells proliferate in response to platelet-derived growth factor. J. Neurosci.21, 3483–3491 (2001). CAS Google Scholar
Aoki, E., Semba, R. & Kashiwamata, S. New candidates for GABAergic neurons in the rat cerebellum: an immunocytochemical study with anti-GABA antibody. Neurosci. Lett.68, 267–271 (1986). CAS Google Scholar
Simmons, M.L. & Dutton, G.R. Neuronal origins of K+-evoked amino acid release from cerebellar cultures. J. Neurosci. Res.31, 646–653 (1992). CAS Google Scholar
Maricich, S.M. & Herrup, K. Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum. J. Neurobiol.41, 281–294 (1999). CAS Google Scholar
Aruga, J. et al. A novel zinc finger protein, zic, is involved in neurogenesis, especially in the cell lineage of cerebellar granule cells. J. Neurochem.63, 1880–1890 (1994). CAS Google Scholar
Shetty, A.K. & Turner, D.A. In vitro survival and differentiation of neurons derived from epidermal growth factor-responsive postnatal hippocampal stem cells: inducing effects of brain-derived neurotrophic factor. J. Neurobiol.35, 395–425 (1998). CAS Google Scholar
Laywell, E.D., Rakic, P., Kukekov, V.G., Holland, E.C. & Steindler, D.A. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc. Natl. Acad. Sci. USA97, 13883–13888 (2000). CAS Google Scholar
Singh, S.K. et al. Identification of a cancer stem cell in human brain tumors. Cancer Res.63, 5821–5828 (2003). CAS Google Scholar
Gabay, L., Lowell, S., Rubin, L.L. & Anderson, D.J. Deregulation of dorsoventral patterning by FGF confers trilineage differentiation capacity on CNS stem cells in vitro. Neuron40, 485–499 (2003). CAS Google Scholar
Gao, W.Q. & Hatten, M.E. Immortalizing oncogenes subvert the establishment of granule cell identity in developing cerebellum. Development120, 1059–1070 (1994). CAS Google Scholar
Snyder, E.Y. et al. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell68, 33–51 (1992). CAS Google Scholar
Milosevic, A. & Goldman, J.E. Progenitors in the postnatal cerebellar white matter are antigenically heterogeneous. J. Comp. Neurol.452, 192–203 (2002). Google Scholar
Alder, J., Cho, N.K. & Hatten, M.E. Embryonic precursor cells from the rhombic lip are specified to a cerebellar granule neuron identity. Neuron17, 389–399 (1996). CAS Google Scholar
Zinyk, D.L., Mercer, E.H., Harris, E., Anderson, D.J. & Joyner, A.L. Fate mapping of the mouse midbrain-hindbrain constriction using a site-specific recombination system. Curr. Biol.8, 665–668 (1998). CAS Google Scholar
Pietsch, T. et al. Medulloblastomas of the desmoplastic variant carry mutations of the human homologue of Drosophila patched. Cancer Res.57, 2085–2088 (1997). CAS Google Scholar
Pomeroy, S.L. et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature415, 436–442 (2002). CAS Google Scholar
Katsetos, C.D. et al. Calbindin-D28k in subsets of medulloblastomas and in the human medulloblastoma cell line D283 Med. Arch. Pathol. Lab. Med.119, 734–743 (1995). CAS Google Scholar
Hemmati, H.D. et al. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl. Acad. Sci. USA100, 15178–15183 (2003). CAS Google Scholar
Weigmann, A., Corbeil, D., Hellwig, A. & Huttner, W.B. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc. Natl. Acad. Sci. USA94, 12425–12430 (1997). CAS Google Scholar
Groszer, M. et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science294, 2186–2189 (2001). CAS Google Scholar