Isolation of neural stem cells from the postnatal cerebellum (original) (raw)

References

  1. Rapoport, M., van Reekum, R. & Mayberg, H. The role of the cerebellum in cognition and behavior: a selective review. J. Neuropsychiatry Clin. Neurosci. 12, 193–198 (2000).
    CAS Google Scholar
  2. Altman, J. & Bayer, S.A. Development of the Cerebellar System: In Relation to Its Evolution, Structure and Functions (CRC Press, Boca Raton, Florida, USA, 1997).
    Google Scholar
  3. Rosenberg, R.N. & Grossman, A. Hereditary ataxia. Neurol. Clin. 7, 25–36 (1989).
    CAS Google Scholar
  4. Kern, J.K. The possible role of the cerebellum in autism/PDD: disruption of a multisensory feedback loop. Med. Hypotheses 59, 255–260 (2002).
    CAS Google Scholar
  5. Martin, P. & Albers, M. Cerebellum and schizophrenia: a selective review. Schizophr. Bull. 21, 241–250 (1995).
    CAS Google Scholar
  6. Wechsler-Reya, R. & Scott, M.P. The developmental biology of brain tumors. Annu. Rev. Neurosci. 24, 385–428 (2001).
    CAS Google Scholar
  7. Wetmore, C. Sonic hedgehog in normal and neoplastic proliferation: insight gained from human tumors and animal models. Curr. Opin. Genet. Dev. 13, 34–42 (2003).
    CAS Google Scholar
  8. Zhang, L. & Goldman, J.E. Generation of cerebellar interneurons from dividing progenitors in white matter. Neuron 16, 47–54 (1996).
    Google Scholar
  9. Hallonet, M.E., Teillet, M.A. & Le Douarin, N.M. A new approach to the development of the cerebellum provided by the quail-chick marker system. Development 108, 19–31 (1990).
    CAS Google Scholar
  10. Lumpkin, E.A. et al. Math1-driven GFP expression in the developing nervous system of transgenic mice. Gene Expr. Patterns 3, 389–395 (2003).
    CAS Google Scholar
  11. Wechsler-Reya, R.J. & Scott, M.P. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 22, 103–114 (1999).
    CAS Google Scholar
  12. Cheng, Y., Tao, Y., Black, I.B. & DiCicco-Bloom, E. A single peripheral injection of basic fibroblast growth factor (bFGF) stimulates granule cell production and increases cerebellar growth in newborn rats. J. Neurobiol. 46, 220–229 (2001).
    CAS Google Scholar
  13. Wernecke, H., Lindner, J. & Schachner, M. Cell type specificity and developmental expression of the L2/HNK-1 epitopes in mouse cerebellum. J. Neuroimmunol. 9, 115–130 (1985).
    CAS Google Scholar
  14. Theodosis, D.T., Rougon, G. & Poulain, D.A. Retention of embryonic features by an adult neuronal system capable of plasticity: polysialylated neural cell adhesion molecule in the hypothalamo-neurohypophysial system. Proc. Natl. Acad. Sci. USA 88, 5494–5498 (1991).
    CAS Google Scholar
  15. Tucker, R.P., Binder, L.I., Viereck, C., Hemmings, B.A. & Matus, A.I. The sequential appearance of low- and high-molecular-weight forms of MAP2 in the developing cerebellum. J. Neurosci. 8, 4503–4512 (1988).
    CAS Google Scholar
  16. Sommer, I. & Schachner, M. Monoclonal antibodies (O1 to O4) to oligodendrocyte surfaces: an immunocytological study in the central nervous system. Dev. Biol. 83, 311–327 (1981).
    CAS Google Scholar
  17. Dawson, M.R., Polito, A., Levine, J.M. & Reynolds, R. NG2-expressing glial progenitor cells: an abundant and widespread population of cycling cells in the adult rat CNS. Mol. Cell. Neurosci. 24, 476–488 (2003).
    CAS Google Scholar
  18. Bignami, A., Eng, L.F., Dahl, D. & Uyeda, C.T. Localization of the glial fibrillary acidic protein in astrocytes by immunofluorescence. Brain Res. 43, 429–435 (1972).
    CAS Google Scholar
  19. Geisert, E.E., Jr., Yang, L. & Irwin, M.H. Astrocyte growth, reactivity, and the target of the antiproliferative antibody, TAPA. J. Neurosci. 16, 5478–5487 (1996).
    CAS Google Scholar
  20. Haegel, H., Tolg, C., Hofmann, M. & Ceredig, R. Activated mouse astrocytes and T cells express similar CD44 variants. Role of CD44 in astrocyte/T cell binding. J. Cell Biol. 122, 1067–1077 (1993).
    CAS Google Scholar
  21. Lendahl, U., Zimmerman, L.B. & McKay, R.D. CNS stem cells express a new class of intermediate filament protein. Cell 60, 585–595 (1990).
    CAS Google Scholar
  22. Corbeil, D., Roper, K., Fargeas, C.A., Joester, A. & Huttner, W.B. Prominin: a story of cholesterol, plasma membrane protrusions and human pathology. Traffic 2, 82–91 (2001).
    CAS Google Scholar
  23. Graham, V., Khudyakov, J., Ellis, P. & Pevny, L. SOX2 functions to maintain neural progenitor identity. Neuron 39, 749–765 (2003).
    CAS Google Scholar
  24. Sakakibara, S. et al. Mouse-Musashi-1, a neural RNA-binding protein highly enriched in the mammalian CNS stem cell. Dev. Biol. 176, 230–242 (1996).
    CAS Google Scholar
  25. Sawamoto, K. et al. Generation of dopaminergic neurons in the adult brain from mesencephalic precursor cells labeled with a nestin-GFP transgene. J. Neurosci. 21, 3895–3903 (2001).
    CAS Google Scholar
  26. Tamaki, S. et al. Engraftment of sorted/expanded human central nervous system stem cells from fetal brain. J. Neurosci. Res. 69, 976–986 (2002).
    CAS Google Scholar
  27. Reynolds, B.A. & Weiss, S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710 (1992).
    CAS Google Scholar
  28. Imura, T., Kornblum, H.I. & Sofroniew, M.V. The predominant neural stem cell isolated from postnatal and adult forebrain but not early embryonic forebrain expresses GFAP. J. Neurosci. 23, 2824–2832 (2003).
    CAS Google Scholar
  29. Takahashi, J., Palmer, T.D. & Gage, F.H. Retinoic acid and neurotrophins collaborate to regulate neurogenesis in adult-derived neural stem cell cultures. J. Neurobiol. 38, 65–81 (1999).
    CAS Google Scholar
  30. Galli, R., Pagano, S.F., Gritti, A. & Vescovi, A.L. Regulation of neuronal differentiation in human CNS stem cell progeny by leukemia inhibitory factor. Dev. Neurosci. 22, 86–95 (2000).
    CAS Google Scholar
  31. Erlandsson, A., Enarsson, M. & Forsberg-Nilsson, K. Immature neurons from CNS stem cells proliferate in response to platelet-derived growth factor. J. Neurosci. 21, 3483–3491 (2001).
    CAS Google Scholar
  32. Aoki, E., Semba, R. & Kashiwamata, S. New candidates for GABAergic neurons in the rat cerebellum: an immunocytochemical study with anti-GABA antibody. Neurosci. Lett. 68, 267–271 (1986).
    CAS Google Scholar
  33. Simmons, M.L. & Dutton, G.R. Neuronal origins of K+-evoked amino acid release from cerebellar cultures. J. Neurosci. Res. 31, 646–653 (1992).
    CAS Google Scholar
  34. Maricich, S.M. & Herrup, K. Pax-2 expression defines a subset of GABAergic interneurons and their precursors in the developing murine cerebellum. J. Neurobiol. 41, 281–294 (1999).
    CAS Google Scholar
  35. Aruga, J. et al. A novel zinc finger protein, zic, is involved in neurogenesis, especially in the cell lineage of cerebellar granule cells. J. Neurochem. 63, 1880–1890 (1994).
    CAS Google Scholar
  36. Shetty, A.K. & Turner, D.A. In vitro survival and differentiation of neurons derived from epidermal growth factor-responsive postnatal hippocampal stem cells: inducing effects of brain-derived neurotrophic factor. J. Neurobiol. 35, 395–425 (1998).
    CAS Google Scholar
  37. Laywell, E.D., Rakic, P., Kukekov, V.G., Holland, E.C. & Steindler, D.A. Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc. Natl. Acad. Sci. USA 97, 13883–13888 (2000).
    CAS Google Scholar
  38. Singh, S.K. et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821–5828 (2003).
    CAS Google Scholar
  39. Gabay, L., Lowell, S., Rubin, L.L. & Anderson, D.J. Deregulation of dorsoventral patterning by FGF confers trilineage differentiation capacity on CNS stem cells in vitro. Neuron 40, 485–499 (2003).
    CAS Google Scholar
  40. Gao, W.Q. & Hatten, M.E. Immortalizing oncogenes subvert the establishment of granule cell identity in developing cerebellum. Development 120, 1059–1070 (1994).
    CAS Google Scholar
  41. Snyder, E.Y. et al. Multipotent neural cell lines can engraft and participate in development of mouse cerebellum. Cell 68, 33–51 (1992).
    CAS Google Scholar
  42. Milosevic, A. & Goldman, J.E. Progenitors in the postnatal cerebellar white matter are antigenically heterogeneous. J. Comp. Neurol. 452, 192–203 (2002).
    Google Scholar
  43. Alder, J., Cho, N.K. & Hatten, M.E. Embryonic precursor cells from the rhombic lip are specified to a cerebellar granule neuron identity. Neuron 17, 389–399 (1996).
    CAS Google Scholar
  44. Zinyk, D.L., Mercer, E.H., Harris, E., Anderson, D.J. & Joyner, A.L. Fate mapping of the mouse midbrain-hindbrain constriction using a site-specific recombination system. Curr. Biol. 8, 665–668 (1998).
    CAS Google Scholar
  45. Pietsch, T. et al. Medulloblastomas of the desmoplastic variant carry mutations of the human homologue of Drosophila patched. Cancer Res. 57, 2085–2088 (1997).
    CAS Google Scholar
  46. Pomeroy, S.L. et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415, 436–442 (2002).
    CAS Google Scholar
  47. Katsetos, C.D. et al. Calbindin-D28k in subsets of medulloblastomas and in the human medulloblastoma cell line D283 Med. Arch. Pathol. Lab. Med. 119, 734–743 (1995).
    CAS Google Scholar
  48. Hemmati, H.D. et al. Cancerous stem cells can arise from pediatric brain tumors. Proc. Natl. Acad. Sci. USA 100, 15178–15183 (2003).
    CAS Google Scholar
  49. Weigmann, A., Corbeil, D., Hellwig, A. & Huttner, W.B. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc. Natl. Acad. Sci. USA 94, 12425–12430 (1997).
    CAS Google Scholar
  50. Groszer, M. et al. Negative regulation of neural stem/progenitor cell proliferation by the Pten tumor suppressor gene in vivo. Science 294, 2186–2189 (2001).
    CAS Google Scholar

Download references